25 resultados para smoke and BSFC

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The firefighters are at increased risk of respiratory disease as a result of exposure to smoke and dust. The aim of this study was to determine the prevalence and risk associated with respiratory symptoms among city firefighters in Sao Paulo, Brazil. Methods A cross-sectional study utilizing the European Community Respiratory Health Survey (ECRHS) questionnaire was administered to firefighters and police officers, in order to evaluate their respiratory symptoms. Results Complete respiraton, data were obtained from 1,235 firefighters and 1,839 police officers. Among the firefighters, there were 55.5% never-smokers, 22.4% current smokers and 18.2% former smokers (P < 0.05). Among the police officers, there were 63.4%, 18.6%, and 9.6% who were never-smokers, current smokers and former smokers (P < 0.05), respectively. Compared to police, firefighters experienced an increase in wheezing [OR = 1.63 (95% CI: 1.43-1.87)], wheezing with breathlessness [OR = 1.34 (95% CI: 1.10-1.64)], wheezing without a cold [OR = 1.60 (95% CI: 1.32-1.95)], waking with tightness in the chest [OR = 1.20 (95% CI: 1.02-1.42)], and rhinitis [OR = 1.12 (95% CI: 1.03-1.22)]. The prevalence of adult-onset asthma in never-smokers was 9.3% and 6.7% for firefighters and police officers [OR = 1.23 (95% CI: 1.01-1.56)]. All independent association was observed between years employed, smoking, history of rhinitis, and work as a firefighter and respiratory, and nasal symptoms. We observed a high prevalence of asthma-like symptoms in firefighters who presented respiratory symptoms beginning immediately after firefighting. Conclusion These results suggest that the prevalence of respiratory symptoms and asthma in firefighters is higher than those in police officers. Work-as a firefighter, rhinitis and vears employed were risk factors for respiratory,symptoms of asthma. Am. J. Ind. Med. 52:261 269, 2009. (C) 2008 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Marijuana contains carcinogens similar to tobacco smoke and has been suggested by relatively small studies to increase the risk of head and neck cancer (HNC). Because tobacco is a major risk factor for HNC, large studies with substantial numbers of never tobacco users could help to clarify whether marijuana smoking is independently associated with HNC risk. Methods: We pooled self-reported interview data on marijuana smoking and known HNC risk factors on 4,029 HNC cases and 5,015 controls from five case-control studies within the INHANCE Consortium. Subanalyses were conducted among never tobacco users (493 cases and 1,813 controls) and among individuals who did not consume alcohol or smoke tobacco (237 cases and 887 controls). Results: The risk of HNC was not elevated by ever marijuana smoking [odds ratio (OR), 0.88; 95% confidence intervals (95% Cl), 0.67-1.16], and there was no increasing risk associated with increasing frequency, duration, or cumulative consumption of marijuana smoking. An increased risk of HNC associated with marijuana use was not detected among never tobacco users (OR, 0.93; 95% Cl, 0.63-1.37; three studies) nor among individuals who did not drink alcohol and smoke tobacco (OR, 1.06; 95% Cl, 0.47-2.38; two studies). Conclusion: Our results are consistent with the notion that infrequent marijuana smoking does not confer a risk of these malignancies. Nonetheless, because the prevalence of frequent marijuana smoking was low in most of the contributing studies, we could not rule out a moderately increased risk, particularly among subgroups without exposure to tobacco and alcohol. (Cancer Epidemiol Biomarkers Prev 2009;18(5):1544-51)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer deaths in the United States, surpassing breast cancer as the primary cause of cancer-related mortality in women. The goal of the present study was to identify early molecular changes in the lung induced by exposure to tobacco smoke and thus identify potential targets for chemoprevention. Female A/J mice were exposed to either tobacco smoke or HEPA-filtered air via a whole-body exposure chamber (6 h/d, 5 d/wk for 3, 8, and 20 weeks). Gene expression profiles of lung tissue from control and smoke-exposed animals were established using a 15K cDNA microarray. Cytochrome P450 1b1, a phase I enzyme involved in both the metabolism of xenobiotics and the 4-hydroxylation of 17 beta-estradiol (E(2)), was modulated to the greatest extent following smoke exposure. A panel of 10 genes were found to be differentially expressed in control and smoke-exposed lung tissues at 3, 8, and 20 weeks (P < 0.001). The interaction network of these differentially expressed genes revealed new pathways modulated by short-term smoke exposure, including estrogen metabolism. In addition, E(2) was detected within murine lung tissue by gas chromatography-coupled mass spectrometry and immunohistochemistry. Identification of the early molecular events that contribute to lung tumor formation is anticipated to lead to the development of promising targeted chemopreventive therapies. In conclusion, the presence of E2 within lung tissue when combined with the modulation of cytochrome P450 1b1 and other estrogen metabolism genes by tobacco smoke provides novel insight into a possible role for estrogens in lung cancer. Cancer Prev Res; 3(6); 707-17. (C) 2010 AACR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Studies have shown that there is no safe level of secondhand smoke (SHS) exposure and there is a close link between SHS and the risk of coronary heart disease and stroke. Carbon monoxide (CO) is one of the most important components present in SHS. Objective To evaluate the impact of the smoking ban law in the city of Sao Paulo, Brazil, on the CO concentration in restaurants, bars, night clubs and similar venues and in their workers. Methods In the present study we measured CO concentration in 585 hospitality venues. CO concentration was measured in different environments (indoor, semi-open and open areas) from visited venues, as well as, in the exhaled air from approximately 627 workers of such venues. Measurements were performed twice, before and 12 weeks after the law implementation. In addition, the quality of the air in the city during the same period of our study was verified. Results The CO concentration pre-ban and pot-ban in hospitality venues was indoor area 4.57 (3.70) ppm vs 1.35 (1.66) ppm (p<0.0001); semi-open 3.79 (2.49) ppm vs 1.16 (1.14) ppm (p<0.0001); open area 3.31 (2.2) ppm vs 1.31 (1.39) ppm (p<0.0001); smoking employees 15.78 (9.76) ppm vs 11.50 (7.53) ppm (p<0.0001) and non-smoking employees 6.88 (5.32) ppm vs 3.50 (2.21) ppm (p<0.0001). The average CO concentration measured in the city was lower than 1 ppm during both pre-ban and post-ban periods. Conclusion Sao Paulos smoking-free legislation reduced significantly the CO concentration in hospitality venues and in their workers, whether they smoke or not.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cigarette smoke is a significant source of cadmium, lead, and toxic elements, which are absorbed into the human organism. In this context, the aim of this study was to investigate in vitro the presence of toxic elements, cadmium, and lead deriving from cigarette smoke in the resin composite, dentine, and dental enamel. Eight cylindrical specimens were fabricated from resin composite, bovine enamel, and root dentin fragments that were wet ground and polished with abrasive paper to obtain sections with 6-mm diameter and 2-mm thickness. All specimens were exposed to the smoke of 10 cigarettes/day during 8 days. After the simulation of the cigarette smoke, the specimens were examined with scanning electron microscopy (SEM) and the energy-dispersive X-ray analysis. In the photomicrographic analysis in SEM, no morphological alterations were found; however, the microanalysis identified the presence of cadmium, arsenic, and lead in the different specimens. These findings suggest that the deposition of these elements derived from cigarette smoke could be favored by dental structures and resin composite. Microsc. Res. Tech. 74:287-291, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quasi-simultaneous vertically resolved multiwavelength aerosol Raman lidar observations were conducted in the near field (Praia, Cape Verde, 15 degrees N, 23.5 degrees W) and in the far field (Manaus, Amazon basin, Brazil, 2.5 degrees S, 60 degrees W) of the long-range transport regime between West Africa and South America. Based on a unique data set (case study) of spectrally resolved backscatter and extinction coefficients, and of the depolarization ratio a detailed characterization of aerosol properties, vertical stratification, mixing, and aging behavior during the long-distance travel in February 2008 (dry season in western Africa, wet season in the Amazon basin) is presented. While highly stratified aerosol layers of dust and smoke up to 5.5 km height were found close to Africa, the aerosol over Manaus was almost well-mixed, reached up to 3.5 km, and mainly consisted of aged biomass burning smoke. Citation: Ansmann, A., H. Baars, M. Tesche, D. Muller, D. Althausen, R. Engelmann, T. Pauliquevis, and P. Artaxo (2009), Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest, Geophys. Res. Lett., 36, L11802, doi: 10.1029/2009GL037923.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM(2.5)) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe an estimation technique for biomass burning emissions in South America based on a combination of remote-sensing fire products and field observations, the Brazilian Biomass Burning Emission Model (3BEM). For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. The burnt area is estimated from the instantaneous fire size retrieved by remote sensing, when available, or from statistical properties of the burn scars. The sources are then spatially and temporally distributed and assimilated daily by the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) in order to perform the prognosis of related tracer concentrations. Three other biomass burning inventories, including GFEDv2 and EDGAR, are simultaneously used to compare the emission strength in terms of the resultant tracer distribution. We also assess the effect of using the daily time resolution of fire emissions by including runs with monthly-averaged emissions. We evaluate the performance of the model using the different emission estimation techniques by comparing the model results with direct measurements of carbon monoxide both near-surface and airborne, as well as remote sensing derived products. The model results obtained using the 3BEM methodology of estimation introduced in this paper show relatively good agreement with the direct measurements and MOPITT data product, suggesting the reliability of the model at local to regional scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondonia, Brazil) using a high-volume dichotomous sampler (HVDS) and a Micro-Orifice Uniform Deposit Impactor (MOUDI) within the framework of the 2002 LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate) campaign. The campaign spanned the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including levoglucosan, malic acid, isoprene secondary organic aerosol (SOA) tracers and tracers for fungal spores. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM(2.5) size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 mu g m(-3) and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m(-3) during the dry period versus 157 ng m(-3) during the transition period and 52 ng m(-3) during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern, which is consistent with different aerosol formation processes (i.e., gas-to-particle partitioning in the case of malic acid and heterogeneous formation from gas-phase precursors in the case of the 2-methyltetrols). The 2-methyltetrols were mainly associated with the fine mode during all periods, while malic acid was prevalent in the fine mode only during the dry and transition periods, and dominant in the coarse mode during the wet period. The sum of the fungal spore tracers arabitol, mannitol, and erythritol in the PM(2.5) fraction of the HVDS samples during the dry, transition, and wet periods was, on average, 54 ng m(-3), 34 ng m(-3), and 27 ng m(-3), respectively, and revealed minor day/night variation. The mass size distributions of arabitol and mannitol during all periods showed similar patterns and an association with the coarse mode, consistent with their primary origin. The results show that even under the heavy smoke conditions of the dry period a natural background with contributions from bioaerosols and isoprene SOA can be revealed. The enhancement in isoprene SOA in the dry season is mainly attributed to an increased acidity of the aerosols, increased NO(x) concentrations and a decreased wet deposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by similar to 350 m for each additional 100 cloud condensation nuclei per cm(3) at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of similar to 2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm(3). The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (r(e)) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their r(e) as if they had been measured inside one well developed cloud. The dependence of r(e) on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at r(e)>=similar to 10 mu m. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at r(e)=similar to 10 mu m, continues to be significant during the cloud's mixing with the entrained air, cancelling out the decrease in r(e) due to evaporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D(p)) ranging from 0.03 to 0.10 mu m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC(a), and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC(e)) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D(p) < 2.5 mu m: average 59.8 mu g m(-3)) were higher than coarse aerosols (D(p) > 2.5 mu m: 4.1 mu g m(-3)). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC(e), comprised more than 90% to the total aerosol mass. Concentrations of EC(a) (estimated by thermal analysis with a correction for charring) and BC(e) (estimated by LTM) averaged 5.2 +/- 1.3 and 3.1 +/- 0.8 mu g m(-3), respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption Angstrom exponent of particles in the size range of 0.1 to 1.0 mu m from >2.0 to approximately 1.2. The size-resolved BC(e) measured by the LTM showed a clear maximum between 0.4 and 0.6 mu m in diameter. The concentrations of OC and BC(e) varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Recent studies have assessed the direct effects of smoking on cardiac remodeling and function. However, the mechanisms of these alterations remain unknown. The aim of this study was to investigate de role of cardiac NADPH oxidase and antioxidant enzyme system on ventricular remodeling induced by tobacco smoke. Methods: Male Wistar rats that weighed 200-230 g were divided into a control group (C) and an experimental group that was exposed to tobacco smoke for a period of two months (ETS). After the two-month exposure period, morphological, biochemical and functional analyses were performed. Results: The myocyte cross-sectional area and left ventricle end-diastolic dimension was increased 16.2% and 33.7%, respectively, in the ETS group. The interstitial collagen volume fraction was also higher in ETS group compared to the controls. In addition to these morphological changes, the ejection fraction and fractional shortening were decreased in the ETS group. Importantly, these alterations were related to augmented heart oxidative stress, which was characterized by an increase in NADPH oxidase activity, increased levels of lipid hydroperoxide and depletion of antioxidant enzymes (e.g., catalase, superoxide dismutase and glutathione peroxidase). In addition, cardiac levels of IFN-gamma, TNF-alpha and IL-10 were not different between the groups. Conclusion: Cardiac alterations that are induced by smoking are associated with increased NADPH oxidase activity, suggesting that this pathway plays a role in the ventricular remodeling induced by exposure to tobacco smoke. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Smoking is a serious worldwide public health problem. Animal models act as a bridge between laboratory and human studies. The models applied are difficult to reproduce because of the use of different types of inhalation chambers and mainly because of the lack of continuous monitoring of smoke concentration. Objective: To develop an inhalation chamber for rats (with only the nose exposed) in which the amount of carbon monoxide (CO) can be maintained and monitored constantly. Material and methods: Male Wistar rats weighing 250 g were exposed to 50 ppm CO produced by the smoke from a filter-free cigarette. The animals were submitted to a single 2-h exposure and then sacrificed at 0, 4, 24 and 48 h. The control group was left restrained inside the small perpendicular chambers, receiving only 5 L/min of compressed air. Results: The model was able to increase HbCO levels immediately after the end of exposure (p < 0.001). with a decrease being observed from 2 h onwards when compared to the levels of the control group. Plasma cotinine increased immediately after exposure, and showed still detectable levels at 2 and 4 h (p < 0.05). Conclusion: We conclude that the presented inhalation chamber system is able to maintain a controlled CO concentration in a model in which small animals are exposed to the inhalation of cigarette smoke, permitting well-controlled studies, as well as investigations involving other toxic gases and air pollutants. (C) 2008 SEPAR. Published by Elsevier Espana, S.L. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed to verify the time course of the effects of environmental levels of urban air pollution toxicity on lung arterioles. BALB/c mice (n = 56) were continuously exposed to selective chambers equipped with (filtered, F) or without (non-filtered, NF) filter devices for particles and toxic gases for 24 h/day, over 14, 21, 30 or 45 days. After exposure, we evaluated the lumen-wall relationship (an estimator of arteriolar narrowing), endothelial nitric oxide synthase (eNOS) and endothelin type A receptor (ETAr) expression in the vascular wall and inflammatory influx of the peribronchiolar area. Concentrations of fine particulate matter (PM <= 2.5 mu g/m(3)), nitrogen dioxide (NO(2)), black smoke (BS), humidity and temperature in both the environment and inside the chambers were measured daily. Filters cleared 100% of BS and 97% of PM inside the F chamber. The arteriole wall of the lungs of mice from NF chamber had an increased ETAr expression (p <= 0.042) concomitant to a decrease in the lumen/wall ratio (p = 0.02) on the early days of exposure, compared to controls. They also presented a progressive increment of inflammatory influx in the peribronchiolar area during the study (p = 0.04) and decrement of the eNOS expression on the 45th day of exposure in both vascular layers (p <= 0.03). We found that after 14 days of exposure, the ambient levels of air pollutants in Sao Paulo induced vasoconstriction that was associated with an increase in ETAr expression. These vascular results do not appear to be coupled to the progressive inflammatory influx in lung tissue, suggesting a down-regulation of vasoconstrictive mechanisms through an imbalance in the cytokines network. It is likely that these responses are protective measures that decrease tissue damage brought about by continuous exposure to air pollutants. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyzed the impact of chronic exposure to urban air pollution on the development of atherosclerosis. Hyperlipemic mice (LDLR(-/-)) were submitted to a high fat diet and air pollution for four months. We measured the susceptibility of LDL to oxidative modifications (TBARS), the presence of anti-oxLDL and an apoB-derived peptide (apoB-D) in blood and the degree of atherosclerosis in the aortic arch. Air pollution increased the susceptibility of LDL to oxidation as well as anti-oxLDL and anti-apo-B levels. These levels were even higher than in mice submitted to a high fat diet and non-polluted air. The lipid content of the atherosclerotic plaques in the aorta was increased in groups with a high cholesterol diet independently of the air quality. However, the thickness of the arterial wall was greater in mice fed a high lipid diet with polluted air. Thus, we conclude that urban air pollution exacerbates the susceptibility of LDL to oxidation, atherogenesis and vascular remodeling in hyperlipemic mice and that an immune response accompanies this process. (C) 2009 Elsevier Ireland Ltd. All rights reserved.