24 resultados para sensor net
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.
Resumo:
Objetivou-se quantificar as frações de carboidratos pelas equações do Cornell Net Carbohydrate and Protein System (CNCPS) de três cultivares de girassol (Helianthus annuus L.) cultivados na presença ou não de irrigação. A utilização de uma preparação fibrosa, denominada parede celular (PC), nas equações da CNCPS, em substituição à fibra em detergente neutro (FDN) não promoveu diferenças nas frações de carboidratos B1 e C, mas influenciou as frações A e B2. Como os valores da fração B1, obtidos pelo modelo CNCPS foram menores que os teores de amido e pectina determinados em laboratório, supõe-se que a pectina e outros oligossacarídeos da parede celular, solubilizados pela solução de detergente neutro (fibra solúvel), nunca fizeram parte da fração B1, e sim da fração A. Apesar de os carboidratos da fibra solúvel apresentarem elevadas taxas de degradação, não parece adequada a caracterização da fibra solúvel na fração A. Parece mais adequado que a fibra solúvel (que inclui a pectina) seja alocada a uma fração exclusivamente sua, que pode ser a fração B2, e que seja criada uma nova fração, a B3, para os carboidratos digeríveis da parede celular. Assim, a fração B1 seria composta apenas de amido. A equação da fração C, que estima os carboidratos indigeríveis da parede celular, pode ser simplificada, relacionando a fração indigerível ao teor de lignina na matéria seca, e não à FDN isenta de cinzas e proteína, como atualmente utilizado. Esta proposta tem implicações práticas, uma vez que a fração indigerível da parede celular tem sido expressa em relação à FDN, e não na MS, com base no fato de que os efeitos inibitórios da lignina ocorrem sobre os componentes fibrosos da parede celular vegetal, e não sobre o conteúdo celular.
Resumo:
The design of a lateral line for drip irrigation requires accurate evaluation of head losses in not only the pipe but in the emitters as well. A procedure was developed to determine localized head losses within the emitters by the formulation of a mathematical model that accounts for the obstruction caused by the insertion point. These localized losses can be significant when compared with tire total head losses within the system due to the large number of emitters typically installed along the lateral line. Air experiment was carried out by altering flow characteristics to create Reynolds numbers (R) from 7,480 to 32,597 to provide turbulent flow and a maximum velocity of 2.0 m s(-1). The geometry of the emitter was determined by an optical projector and sensor An equation was formulated to facilitate the localized head loss calculation using the geometric characteristics of the emitter (emitter length, obstruction ratio, and contraction coefficient). The mathematical model was tested using laboratory measurements on four emitters. The local head loss was accurately estimated for the Uniram (difference of +13.6%) and Drip Net (difference of +7.7%) emitters, while appreciable deviations were found for the Twin Plus (-21.8%) and Tiran (+50%) emitters. The head loss estimated by the model was sensitive to the variations in the obstruction area of the emitter However, the variations in the local head loss did not result in significant variations in the maximum length of the lateral lines. In general, for all the analyzed emitters, a 50% increase in the local head loss for the emitters resulted in less than an 8% reduction in the maximum lateral length.
Resumo:
We present measurements of net charge fluctuations in Au+Au collisions at s(NN)=19.6, 62.4, 130, and 200 GeV, Cu+Cu collisions at s(NN)=62.4 and 200 GeV, and p+p collisions at s=200 GeV using the dynamical net charge fluctuations measure nu(+-,dyn). We observe that the dynamical fluctuations are nonzero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N(ch) scaling but display approximate 1/N(part) scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.
Resumo:
200 GeV corresponding to baryon chemical potentials (mu(B)) between 200 and 20 MeV. Our measurements of the products kappa sigma(2) and S sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long-range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the root s(NN) dependence of kappa sigma(2). From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for mu(B) below 200 MeV.
Resumo:
We present in this paper an active waveguide effect observed in porous anodic alumina (PA), which can be applied in optical sensors. The spectral position, shape, and polarization effect of the narrow waveguide modes is described. An analytical test with a commercial pesticide was performed. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3447375]
Resumo:
The use of chromic materials for responsive surface-enhanced resonance Raman scattering (SERRS) based nanosensors is reported. The potential of nano-chromic SERRS is demonstrated with the use of the halochrome methyl yellow to fabricate an ultrasensitive pH optical sensor. Some of the challenges of the incorporation of chromic materials with metal nanostructures are addressed through the use of computational calculations and a comparison to measured SERRS and surface-enhanced Raman scattering (SERS) spectra is presented. A strong correlation between the measured SERRS and the medium's proton concentration is demonstrated for the pH range 2-6. The high sensitivity achieved by the use of resonance Raman conditions is shown through responsive SERRS measurements from only femtolitres of volume and with the concentration of the reporting molecules approaching the single molecule regime.
Resumo:
This work describes the coupling of a biomimetic sensor to a flow injection system for the sensitive determination of paracetamol. The sensor was prepared as previously described in the literature (M. D. P. T. Sotomayor, A. Sigoli, M. R. V. Lanza, A. A. Tanaka and L. T. Kubota, J. Braz. Chem. Soc., 2008, 19, 734) by modifying a glassy carbon electrode surface with a Nafion (R) membrane doped with iron tetrapyridinoporphyrazine (FeTPyPz), a biomimetic catalyst of the P450 enzyme. The performance of the sensor for paracetamol detection was investigated and optimized in a flow injection system (FIA) using a wall jet electrochemical cell. Under optimized conditions a wide linear response range (1.0 x 10(-5) to 5.0 x 10(-2) mol L(-1)) was obtained, with a sensitivity of 2579 (+/- 129) mu A L mu mol(-1). The detection and quantification limits of the sensor for paracetamol in the FIA system were 1.0 and 3.5 mu mol L(-1), respectively. The analytical frequency was 51 samples h(-1), and over a period of five days (320 determinations) the biosensor maintained practically the same response. The system was successfully applied to paracetamol quantification in seven pharmaceutical formulations and in water samples from six rivers in Sao Paulo State, Brazil.
Resumo:
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO(2)) from fossil fuels, methane (CH(4)) and nitrous oxide (N(2)O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg C(eq)), and in the unburned system (559 out of 748 kg C(eq)). Although nitrogen fertilizer emissions are large, 111 kg C(eq) ha-1 yr-1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg C(eq) ha-1 yr-1). and BC (1536 kg C(eq) ha-1 yr-1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha-1 yr-1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.
Resumo:
Blanks (flasks without substrate containing only inoculum and medium) are used in vitro to correct for gas. CH(4) and residual organic matter (OM) fermented in inoculum. However inclusion of rumen fermentation modifiers may affect fermentation of OM in the substrate and inoculum. Thus, data correction using blanks that lack additives may result in inaccurate adjustment for background fermentation. Our objective was to evaluate impacts of using blanks containing additive (i.e., specific blanks) or blanks without additive on estimation of in vitro net gas and CH(4) production. We used the semi-automatic in vitro gas production technique including monensin sodium at 2.08 mg/l of buffered rumen fluid (Experiment 1) or carvacrol, eugenol and 1,8-cineol at 667 mg/l (Experiment 2) in flasks with substrate and in blank flasks. At 16h of incubation, monensin reduced (P <= 0.02) total gas production in flasks containing substrate (162.0 ml versus 146.3 ml) and in blanks (84.4 ml versus 79.2 ml). Total methane production was also decreased (P <= 0.05) by adding monensin to flasks containing substrate (15.7 ml versus 11.9 ml) as well as in blanks (6.4 ml versus 5.0 ml). Inclusion of carvacrol or eugenol reduced (P <= 0.05) total gas and CH(4) production in flasks with substrate and in blanks, but in a more pronounced manner than monensin. For these three additives, correction for blank without additive resulted in lower net gas and CH(4) production than correction for a treatment specific blank. For instance, correcting carvacrol data using a blank without the additive resulted in negative net gas and CH(4) production (-6.5 and -1.5 ml. respectively). These biologically impossible results occurred because total gas and CH(4) production in blanks without carvacrol (46.1 and 2.1 ml, respectively) were higher than in flasks containing substrate plus carvacrol (39.7 and 0.6 ml, respectively). Results demonstrated that inclusion of rumen additives affected fermentation of OM in the substrate and the inoculum. Thus, correction of gas and CH(4) production using blanks without additives resulted in overestimation of these variables. Blanks containing the additive of interest should be included when rumen fermentation modifiers are evaluated in vitro. This paper is part of the special issue entitled: Greenhouse Gases in Animal Agriculture Finding a Balance between Food and Emissions, Guest Edited by T.A. McAllister, Section Guest Editors: K.A. Beauchemin, X. Hao, S. McGinn and Editor for Animal Feed Science and Technology, P.H. Robinson. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Aims: The clinical benefits of angiotensin II type 1 (AT1) receptor blockers (ARB) in heart failure (HF) include cardiac anti-remodeling and improved ventricular function. However, the cellular mechanisms underlying the benefits of ARB on ventricular function need to be better clarified. In the present manuscript, we evaluated the effects of AT1 receptor blockade on the net balance of Ca(2+) handling proteins in hearts of mice lacking alpha(2A) and alpha(2C) adrenoceptors (alpha(2A)/alpha(2C)ARKO), which develop sympathetic hyperactivity (SH) induced-HF. Main methods: A cohort of male wild-type (WT) and congenic alpha(2A)/alpha(2C)ARKO mice in a C57BL6/J genetic background (5-7 mo of age) was randomly assigned to receive either placebo or ARB (Losartan, 10 mg/kg for 8wks). Ventricular function (VF) was assessed by echocardiography, and cardiac myocyte width and ventricular fibrosis by a computer-assisted morphometric system. Sarcoplasmic reticulum Ca(2+) ATPase (SERCA2), phospholamban (PLN), phospho-Ser(16)-PLN, phospho-Thr(17)-PLN, phosphatase 1 (PP1), Na(+)-Ca(2+) exchanger (NCX), Ca(2+)/calmodulin-dependent protein kinase 11 (CaMKII) and phospho-Thr(286)-CaMKII were analyzed by Western blot. Key findings: alpha(2A)/alpha(2C)ARKO mice displayed ventricular dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis paralleled by decreased SERCA2 and increased phospho-Thr(17)-PLN, CaMKII, phospho-Thr(286)-CaMKII and NCX levels. ARB induced anti-cardiac remodeling effect and improved VF in alpha(2A)/alpha(2C)ARKO associated with increased SERCA2 and phospho-Ser(16)-PLN levels, and SERCA2:NCX ratio. Additionally, ARB decreased phospho-Thr(17)-PLN levels as well as reestablished NCX, CaMKII and phospho-Thr(286)-CaMKII toward WT levels. Significance: Altogether, these data provide new insights on intracellular Ca(2+) regulatory mechanisms underlying improved ventricular function by ARB therapy in HF. (c) 2011 Elsevier Inc. All rights reserved.
Resumo:
The interaction between poly(o-ethoxyaniline) (POEA) adsorbed onto solid substrates and humic substances (HS) and Cu(2+) ions has been investigated using UV-vis spectroscopy and atomic force microscopy (AFM). Both HS and Cu(2+) are able to dope POEA and change film morphology. This interaction was exploited in a sensor array made with nanostructured films of POEA, sulfonated lignin and HS, which could detect small concentrations of HS and Cu(2+) in water. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, a novel wire-mesh sensor based on permittivity (capacitance) measurements is applied to generate images of the phase fraction distribution and investigate the flow of viscous oil and water in a horizontal pipe. Phase fraction values were calculated from the raw data delivered by the wire-mesh sensor using different mixture permittivity models. Furthermore, these data were validated against quick-closing valve measurements. Investigated flow patterns were dispersion of oil in water (Do/w) and dispersion of oil in water and water in oil (Do/w&w/o). The Maxwell-Garnett mixing model is better suited for Dw/o and the logarithmic model for Do/w&w/o flow pattern. Images of the time-averaged cross-sectional oil fraction distribution along with axial slice images were used to visualize and disclose some details of the flow.
Resumo:
Wireless Sensor Networks (WSNs) have a vast field of applications, including deployment in hostile environments. Thus, the adoption of security mechanisms is fundamental. However, the extremely constrained nature of sensors and the potentially dynamic behavior of WSNs hinder the use of key management mechanisms commonly applied in modern networks. For this reason, many lightweight key management solutions have been proposed to overcome these constraints. In this paper, we review the state of the art of these solutions and evaluate them based on metrics adequate for WSNs. We focus on pre-distribution schemes well-adapted for homogeneous networks (since this is a more general network organization), thus identifying generic features that can improve some of these metrics. We also discuss some challenges in the area and future research directions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Piezoresistive materials, materials whose resistivity properties change when subjected to mechanical stresses, are widely utilized in many industries as sensors, including pressure sensors, accelerometers, inclinometers, and load cells. Basic piezoresistive sensors consist of piezoresistive devices bonded to a flexible structure, such as a cantilever or a membrane, where the flexible structure transmits pressure, force, or inertial force due to acceleration, thereby causing a stress that changes the resistivity of the piezoresistive devices. By applying a voltage to a piezoresistive device, its resistivity can be measured and correlated with the amplitude of an applied pressure or force. The performance of a piezoresistive sensor is closely related to the design of its flexible structure. In this research, we propose a generic topology optimization formulation for the design of piezoresistive sensors where the primary aim is high response. First, the concept of topology optimization is briefly discussed. Next, design requirements are clarified, and corresponding objective functions and the optimization problem are formulated. An optimization algorithm is constructed based on these formulations. Finally, several design examples of piezoresistive sensors are presented to confirm the usefulness of the proposed method.