7 resultados para sedimentary petrology
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The Itajai Basin located in the southern border of the Luis Alves Microplate is considered as a peripheral foreland basin related to the Dom Feliciano Belt. It presents an excellent record of the Ediacaran period, and its upper parts display the best Brazilian example of Precambrian turbiditic deposits. The basal succession of Itajai Group is represented by sandstones and conglomerates (BaA(0) Formation) deposited in alluvial and deltaic-fan systems. The marine upper sequences correspond to the Ribeiro Carvalho (channelized and non-channelized proximal silty-argillaceous rhythmic turbidites), Ribeiro Neisse (arkosic sandstones and siltites), and Ribeiro do Bode (distal silty turbidites) formations. The ApiA(0)na Formation felsic volcanic rocks crosscut the sedimentary succession. The Cambrian Subida leucosyenogranite represents the last felsic magmatic activity to affect the Itajai Basin. The Brusque Group and the Florianpolis Batholith are proposed as source areas for the sediments of the upper sequence. For the lower continental units the source areas are the Santa Catarina, So Miguel and CamboriA(0) complexes. The lack of any oceanic crust in the Itajai Basin suggests that the marine units were deposited in a restricted, internal sea. The sedimentation started around 600 Ma and ended before 560 Ma as indicated by the emplacement of rhyolitic domes. The Itajai Basin is temporally and tectonically correlated with the Camaqu Basin in Rio Grande do Sul and the Arroyo del Soldado/Piriapolis Basin in Uruguay. It also has several tectono-sedimentary characteristics in common with the African-equivalent Nama Basin.
Resumo:
The lavas produced by the Timanfaya eruption of 1730-1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine +/- orthopyroxene +/- clinopyroxene +/- plagioclase: their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The (87)Sr/(16)Sr (around 0.703) and (143)Nd/(144)Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the (147)Sm/(144)Nd ratios show crustal values (0.13-0.16) in the ultramafic xenoliths and mantle values (0.18-0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange ((87)Sr/(86)Sr and (143)Nd/(144)Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Jacadigo Group contains one of the largest sedimentary iron and associated manganese deposits of the Neoproterozoic. Despite its great relevance, no detailed sedimentological study concerning the unit has been carried out to date. Here we present detailed sedimentological data and interpretation on depositional systems, system tracts, external controls on basin evolution, basin configuration and regional tectonic setting of the Jacadigo Basin. Six depositional systems were recognized: (I) an alluvial fan system; (II) a siliciclastic lacustrine system; (III) a fan-delta system; (IV) a bedload-dominated river system; (V) an iron formation-dominated lacustrine or marine gulf system; and (VI) a rimmed carbonate platform system. The interpreted depositional systems are related to three tectonic system tracts. The first four depositional systems are mainly made of continental siliciclastics and refer to the rift initiation to early rift climax stage; the lake/gulf system corresponds to the mid to late rift climax stage and the carbonate platform represents the immediate to late post rift stage (Bocaina Formation deposits of the Ediacaran fossil-bearing Corumba Group). The spatial distribution of the depositional systems and associated paleocurrent patterns indicate a WNW-ESE orientation of the master fault zone related to the formation of the Jacadigo Basin. Thus, the iron formations of the Jacadigo Group were deposited in a starved waterbody related to maximum fault displacement and accommodation rates in a restricted continental rift basin. The Fe-Si-Mn source was probably related to hydrothermal plume activity that reached the basin through the fault system during maximum fault displacement phases. Our results also suggest a restricted tectono-sedimentary setting for the type section of the Puga Formation. The Jacadigo Group and the Puga Formation, usually interpreted as glacial deposits, are readdressed here as basin margin gravitational deposits with no necessary relation to glacial processes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the results of a new investigation of the Guarani Aquifer System (SAG) in Sao Paulo state. New data were acquired about sedimentary framework, flow pattern, and hydrogeochemistry. The flow direction in the north of the state is towards the southwest and not towards the west as expected previously. This is linked to the absence of SAG outcrop in the northeast of Sao Paulo state. Both the underlying Piramboia Formation and the overlying Botucatu Formation possess high porosity (18.9% and 19.5%, respectively), which was not modified significantly by diagenetic changes. Investigation of sediments confirmed a zone of chalcedony cement close to the SAG outcrop and a zone of calcite cement in the deep confined zone. The main events in the SAG post-sedimentary history were: (1) adhesion of ferrugineous coatings on grains, (2) infiltration of clays in eodiagenetic stage, (3) regeneration of coatings with formation of smectites, (4) authigenic overgrowth of quartz and K-feldspar in advanced eodiagenetic stage, (5) bitumen cementation of Piramboia Formation in mesodiagenetic stage, (6) cementation by calcite in mesodiagenetic and telodiagenetic stages in Piramboia Formation, (7) formation of secondary porosity by dissolution of unstable minerals after appearance of hydraulic gradient and penetration of the meteoric water caused by the uplift of the Serra do Mar coastal range in the Late Cretaceous, (8) authigenesis of kaolinite and amorphous silica in unconfined zone of the SAG and cation exchange coupled with the dissolution of calcite at the transition between unconfined and confined zone, and (9) authigenesis of analcime in the confined SAG zone. The last two processes are still under operation. The deep zone of the SAG comprises an alkaline pH, Na-HCO(3) groundwater type with old water and enriched delta(13)C values (<-3.9), which evolved from a neutral pH, Ca-HCO(3) groundwater type with young water and depleted delta(13)C values (>-18.8) close to the SAG outcrop. This is consistent with a conceptual geochemical model of the SAG, suggesting dissolution of calcite driven by cation exchange, which occurs at a relatively narrow front recently moving downgradient at much slower rate compared to groundwater flow. More depleted values of delta(18)O in the deep confined zone close to the Parana River compared to values of relative recent recharged water indicate recharge occur during a period of cold climate. The SAG is a ""storage-dominated"" type of aquifer which has to be managed properly to avoid its overexploitation. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The optically stimulated luminescence (OSL) sensitivity of quartz has a significant influence on luminescence dating procedures. Furthermore, identifying the natural controls of quartz OSL sensitivity is an important step towards new applications of OSL in geology such as provenance tracing. We evaluate the OSL sensitivity (total and the proportion of the informally assigned fast, medium and slow components) of single grains of quartz extracted from 10 different igneous and metamorphic rocks with known formation conditions; and from fluvial and coastal sediments with different sedimentary histories and known source rocks. This sample suite allows assessment of the variability of the OSL sensitivity of single quartz grains with respect to their primary origin and sedimentary history. We observed significant variability in the OSL sensitivity of grains within all studied rock and sediment samples, with the brightest grains of each sample being those dominated by the fast component. Quartz from rocks formed under high temperature (> 500 degrees C) conditions, such as rhyolites and metamorphic rocks from the amphibolite facies, display higher OSL sensitivity. The OSL sensitivity of fluvial sediments which have experienced only a short transport distance is relatively low. These sediments show a small increase in OSL sensitivity downstream, mainly due to a decreasing fraction of ""dim"" grains. The quartz grains from coastal sands present very high sensitivity and variability, which is consistent with their long sedimentary history. The high variability of the OSL sensitivity of quartz from coastal sands is attributed more to the mixture of grains with distinct sedimentary histories than to the provenance from many types of source rocks. The temperature of crystallization and the number of cycles of burial and solar exposure are suggested as the main natural factors controlling the OSL sensitivity of quartz grains. The increase in OSL sensitivity due to cycles of erosion and deposition surpasses the sensitivity inherited from the source rock, with this increase being mainly related to the sensitization of fast OSL components. The discrimination of grains with different sedimentary histories through their OSL sensitivities can allow the development of quantitative provenance methods based on quartz. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The metamorphosed banded iron formation from the Nogoli Metamorphic Complex of western Sierra de San Luis, Eastern Sierras Pampeanas of Argentina (Nogoli area, 32 degrees 55`S-66 degrees 15`W) is classified as an oxide facies iron formation of Algoma Type, with a tectonic setting possibly associated with an island arc or back arc, on the basis of field mapping, mineral and textural arrangements and whole rock geochemical features. The origin of banded iron formation is mainly related to chemical precipitation of hydrogenous sediments from seawater in oceanic environments. The primary chemical precipitate is a result of solutions that represent mixtures of seawater and hydrothermal fluids, with significant dilution by maficultramafic volcanic and siliciclastic materials. Multi-stage T(DM) model ages of 1670, 1854 and 1939 Ma and positive, mantle-like xi Nd((1502)) values of +3.8, +1.5 and +0.5 from the banded iron formation are around the range of those mafic to ultramafic meta-volcanic rocks of Nogoli Metamorphic Complex, which are between 1679 and 1765 Ma and +2.64 and +3.68, respectively. This Sm and Nd isotopic connection suggests a close genetic relationship between ferruginous and mafic-ultramafic meta-volcanic rocks, as part of the same island arc or back arc setting. A previous Sm-Nd whole rock isochron of similar to 1.5 Ga performed on mafic-ultramafic meta-volcanic rocks led to the interpretation that chemical sedimentation as old as Mesoproterozoic is possible for the banded iron formation. A clockwise P-T path can be inferred for the regional metamorphic evolution of the banded iron formation, with three distinctive trajectories: (1) Relict prograde M(1)-M(3) segment with gradual P and T increase from greenschist facies at M(1) to amphibolite facies at M(3). (2) Peak P-T conditions at high amphibolite-low granulite facies during M(4). (3) Retrograde counterpart of M(4), that returns from amphibolite facies and stabilizes at greenschist facies during M(5). Each trajectory may be regarded as produced by different tectonic events related to the Pampean? (1) and the Famatinian (2 and 3) orogenies, during the Early to Middle Paleozoic. The Nogoli Metamorphic Complex is interpreted as part of a greenstone belt within the large Meso- to Neoproterozoic Pampean Terrane of the Eastern Sierras Pampeanas of Argentina. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
New U-Pb zircon and (40)Ar-(39)Ar K-feldspar data are presented for syn-sedimentary volcanogenic rocks from the Neoproterozoic Marica Formation, located in the southern Brazilian shield. Seven (of nine) U-Pb sensitive high-resolution ion microprobe analyses of zircons from pyroclastic cobbles yield an age of 630.2 +/- 3.4 Ma (2 sigma), interpreted as the age of syn-sedimentary volcanism, and thus of the deposition itself. This result indicates that the Marica Formation was deposited during the main collisional phase (640-620 Ma) of the Brasiliano II orogenic system, probably as a forebulge or back-bulge, craton-derived foreland succession. Thus, this unit is possibly correlative of younger portions of the Porongos, Brusque, Passo Feio, Abapa (Itaiacoca) and Lavalleja (Fuente del Puma) metamorphic complexes. Well-defined, step-heating (40)Ar-(39)Ar K-feldspar plateau ages obtained from volcanogenic beds and pyroclastic cobbles of the lower and upper successions of the Marica Formation yielded 507.3 +/- 1.8 Ma and 506.7 +/- 1.4 Ma (2 sigma), respectively. These data are interpreted to reflect total isotopic resetting during deep burial and thermal effects related to magmatic events. Late Middle Cambrian cooling below ca. 200 degrees C, probably related to uplift, is tentatively associated with intraplate effects of the Rio Doce and/or Pampean orogenies (Brasiliano III system). In the southern Brazilian shield, these intraplate stresses are possibly related to the dominantly extensional opening of a rift or a pull-apart basin, where sedimentary rocks of the Camaqua Group (Santa Barbara and Guaritas Formations) accumulated.