3 resultados para salivary flow

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oral health complications in diabetes include decreased salivary secretion. The SLC5A1 gene encodes the Na(+)-glucose cotransporter SGLT1 protein, which not only transports glucose, but also acts as a water channel. Since SLC5A1 expression is altered in kidneys of diabetic subjects, we hypothesize that it could also be altered in salivary glands, contributing to diabetic dysfunction. The present study shows a diabetes-induced decrease (p < 0.001) in salivary secretion, which was accompanied by enhanced (p < 0.05) SGLT1 mRNA expression in parotid (50%) and submandibular (30%) glands. Immunohistochemical analysis of parotid gland of diabetic rats revealed that SGLT1 protein expression increased in the luminal membrane of ductal cells, which can stimulate water reabsorption from primary saliva. Furthermore, SGLT1 protein was reduced in myoepithelial cells of the parotid from diabetic animals, and that, by reducing cellular contractile activity, might also be related to reduced salivary flux. Six-day insulin-treated diabetic rats reversed all alterations. In conclusion, diabetes increases SLC5A1 gene expression in salivary glands, increasing the SGLT1 protein content in the luminal membrane of ductal cells, which, by increasing water reabsorption, might explain the diabetes-induced decrease in salivary secretion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Previous studies reported alterations in salivary flow rate and biochemical parameters of saliva in cerebral palsy (CP) individuals; however, none of these considered the type of neuromotor abnormality among CP individuals, thus it remains unclear whether the different anatomical and extended regions of the brain lesions responsible for the neurological damage in CP might include disruption of the regulatory mechanism of saliva secretion as part of the encephalopathy. The aim of this study was to evaluate salivary flow rate, pH and buffer capacity in saliva of individuals with CP, aged 3-16 years, with spastic neuromotor abnormality type and clinical patterns of involvement. Methods: Sixty-seven individuals with CP spasticity movement disorder, were divided in two groups according to age (3-8- and 9-16-years-old) and compared with 35 sibling volunteers with no neurological damage, divided in two groups according to age (3-8- and 9-16-years-old). Whole saliva was collected under slight suction and pH and buffer capacity were determined using a digital pHmeter. Buffer capacity was measured by titration using 0.01N HCL, and flow rate was calculated in ml/min. Results: In both age groups studied, whole saliva flow rate, pH and buffer capacity were significantly lower in the spastic CP group (P < 0.05). The clinical patterns of involvement did not influence the studied parameters. Conclusion: These findings show that individuals with spastic cerebral palsy present lower salivary flow rate, pH and buffer capacity that can increase the risk of oral disease in this population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored. Basal SNA was threefold higher in SHR (P < 0.001 vs. WKY), and diabetes decreased this activity (similar to 50%, P < 0.05) in both WKY and SHR. The catalytic subunit of PKA and the plasma membrane SGLT1 content in acinar cells were regulated in parallel to the SNA. Electrical stimulation of the sympathetic branch to salivary glands increased (similar to 30%, P < 0.05) PKA and SGLT1 expression. Immunohistochemical analysis confirmed the observed regulations of SGLT1, revealing its location in basolateral membrane of acinar cells. Taken together, our results show highly coordinated regulation of sympathetic activity upon PKA activity and plasma membrane SGLT1 content in salivary glands. Furthermore, the present findings show that diabetic- and/or hypertensive-induced changes in the sympathetic activity correlate with changes in SGLT1 expression in basolateral membrane of acinar cells, which can participate in the salivary glands dysfunctions reported by patients with these pathologies.