17 resultados para reverse transcription - PCR.R
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Distinct subsets of hypothalamic genes are modulated by two different thermogenesis-inducing stimuli
Resumo:
Obesity results from an imbalance between food intake and energy expenditure, two vital functions that are tightly controlled by specialized neurons of the hypothalamus. The complex mechanisms that integrate these two functions are only beginning to be deciphered. The objective of this study was to determine the effect of two thermogenesis-inducing conditions, i.e., ingestion of a high-fat (HF) diet and exposure to cold environment, on the expression of 1,176 genes in the hypothalamus of Wistar rats. Hypothalamic gene expression was evaluated using a cDNA macroarray approach. mRNA and protein expressions were determined by reverse-transcription PCR (RT-PCR) and immunoblot. Cold exposure led to an increased expression of 43 genes and to a reduced expression of four genes. HF diet promoted an increased expression of 90 genes and a reduced expression of 78 genes. Only two genes (N-methyl-D-aspartate (NMDA) receptor 2B and guanosine triphosphate (GTP)-binding protein G-alpha-i1) were similarly affected by both thermogenesis-inducing conditions, undergoing an increment of expression. RT-PCR and immunoblot evaluations confirmed the modulation of NMDA receptor 2B and GTP-binding protein G-alpha-i1, only. This corresponds to 0.93% of all the responsive genes and 0.17% of the analyzed genes. These results indicate that distinct environmental thermogenic stimuli can modulate predominantly distinct profiles of genes reinforcing the complexity and multiplicity of the hypothalamic mechanisms that regulate energy conservation and expenditure.
Resumo:
At surgical depths of anesthesia, inhalational anesthetics cause a loss of motor response to painful stimuli (i.e., immobilization) that is characterized by profound inhibition of spinal motor circuits. Yet, although clearly depressed, the respiratory motor system continues to provide adequate ventilation under these same conditions. Here, we show that isoflurane causes robust activation of CO(2)/pH-sensitive, Phox2b-expressing neurons located in the retrotrapezoid nucleus (RTN) of the rodent brainstem, in vitro and in vivo. In brainstem slices from Phox2b-eGFP mice, the firing of pH-sensitive RTN neurons was strongly increased by isoflurane, independent of prevailing pH conditions. At least two ionic mechanisms contributed to anesthetic activation of RTN neurons: activation of an Na(+)-dependent cationic current and inhibition of a background K(+) current. Single-cell reverse transcription-PCR analysis of dissociated green fluorescent protein-labeled RTN neurons revealed expression of THIK-1 (TWIK-related halothane-inhibited K(+) channel, K(2P)13.1), a channel that shares key properties with the native RTN current (i.e., suppression by inhalational anesthetics, weak rectification, inhibition by extracellular Na(+), and pH-insensitivity). Isoflurane also increased firing rate of RTN chemosensitive neurons in urethane-anesthetized rats, again independent of CO(2) levels. In these animals, isoflurane transiently enhanced activity of the respiratory system, an effect that was most prominent at low levels of respiratory drive and mediated primarily by an increase in respiratory frequency. These data indicate that inhalational anesthetics cause activation of RTN neurons, which serve an important integrative role in respiratory control; the increased drive provided by enhanced RTN neuronal activity may contribute, in part, to maintaining respiratory motor activity under immobilizing anesthetic conditions.
Resumo:
The Eag1 and Eag2, voltage-dependent potassium channels, and the small-conductance calcium-activated potassium channel (Kcnn3) are highly expressed in limbic regions of the brain, where their function is still unknown. Eag1 co-localizes with tyrosine hydroxilase enzyme in the substantia nigra and ventral tegmental area. Kcnn3 deficiency leads to enhanced serotonergic and dopaminergic neurotransmission accompanied by distinct alterations in emotional behaviors. As exposure to stress is able to change the expression and function of several ion channels, suggesting that they might be involved in the consequences of stress, we aimed at investigating Eag 1, Eag2 and Kcnn3 mRNA expression in the brains of rats submitted to isolation rearing. As the long-lasting alterations in emotional and behavioral regulation after stress have been related to changes in serotonergic neurotransmission, expressions of serotonin Htr1a and Htr2a receptors in male Wistar rats` brain were also investigated. Rats were reared in isolation or in groups of five for nine weeks after weaning. Isolated and socially reared rats were tested for exploratory activity in the open field test for 5 min and brains were processed for reverse-transcription coupled to quantitative polymerase chain reaction (qRT-PCR). Isolated reared rats showed decreased exploratory activity in the open field. Compared to socially reared rats, isolated rats showed reduced Htr2a mRNA expression in the striatum and brainstem and reduced Eag2 mRNA expression in all examined regions except cerebellum. To our knowledge, this is the first work to show that isolation rearing can change Eag2 gene expression in the brain. The involvement of this channel in stress-related behaviors is discussed.
Resumo:
Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is a standard assay in molecular medicine for gene expression analysis. Samples from incisional/needle biopsies, laser-microdissected tumor cells and other biologic sources, normally available in clinical cancer studies, generate very small amounts of RNA that are restrictive for expression analysis. As a consequence, an RNA amplification procedure is required to assess the gene expression levels of such sample types. The reproducibility and accuracy of relative gene expression data produced by sensitive methodology as qRT-PCR when cDNA converted from amplified (A) RNA is used as template has not yet been properly addressed. In this study, to properly evaluate this issue, we performed 1 round of linear RNA amplification in 2 breast cell lines (C5.2 and HB4a) and assessed the relative expression of 34 genes using cDNA converted from both nonamplified (NA) and A RNA. Relative gene expression was obtained from beta actin or glyceraldehyde 3-phosphate dehydrogenase normalized data using different dilutions of cDNA, wherein the variability and fold-change differences in the expression of the 2 methods were compared. Our data showed that 1 round of linear RNA amplification, even with suboptimal-quality RNA, is appropriate to generate reproducible and high-fidelity qRT-PCR relative expression data that have similar confidence levels as those from NA samples. The use of cDNA that is converted from both A and NA RNA in a single qRT-PCR experiment clearly creates bias in relative gene expression data.
Resumo:
Background and objectives: There have been few studies investigating acute kidney injury (AKI) in patients infected with the 2009 pandemic influenza A (H1N1) virus. Therefore, the objective of this study was to identify the factors associated with AKI in H1N1-infected patients. Design, setting, participants, & measurements: This was a study of 47 consecutive critically ill adult patients with reverse transcriptase-PCR-confirmed H1N1 infection in Brazil. Outcome measures were AKI (as defined by the Risk, Injury, Failure, Loss, and End-stage renal failure [RIFLE] criteria) and in-hospital death. Results: AKI was identified in 25 (53%) of the 47 H1N1-infected patients. AKI was associated with vasopressor use, mechanical ventilation, high Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, and severe acidosis as well as with higher levels of C-reactive protein and lactic dehydrogenase upon intensive care unit (ICU) admission. A nephrology consultation was requested for 16 patients (64%), and 8 (50%) required dialysis. At ICU admission, 7 (15%) of the 25 AKI patients had not yet progressed to AKI. However, by 72 hours after ICU admission, no difference in RIFLE score was found between AKI survivors and nonsurvivors. Of the 47 patients, 9 (19%) died, all with AKI. Mortality was associated with mechanical ventilation, vasopressor use, dialysis, high APACHE II score, high bilirubin levels, and a low RIFLE score at ICU admission. Conclusions: Among critically ill H1N1-infected patients, the incidence of AKI is high. In such patients, AKI is mainly attributable to shock. Clin J Am Soc Nephrol 5: 1916-1921, 2010. doi: 10.2215/CJN.00840110
Resumo:
Objectives: The effect of glucose and palmitate on the phosphorylation of proteins associated with cell growth and survival (extracellular signal-regulated kinase 1/2 [ERK1/2] and stress-activated protein kinase/c-Jun NH2-terminal kinase [SAPK/JNK]) and on the expression of immediate early genes was investigated. Methods: Groups of freshly isolated rat pancreatic islets were incubated in 10-mmol/L glucose with palmitate, LY294002, or fumonisin B1 for the measurement of the phosphorylation and the content of ERK1/2, JNK/SAPK, and v-akt murine thymoma viral oncongene (AKT) (serine 473) by immunoblotting. The expressions of the immediate early genes, c-fos and c-jun, were evaluated by reverse transcription-polymerase chain reaction. Results: Glucose at 10 mmol/L induced ERK1/2 and AKT phosphorylations and decreased SAPK/JNK phosphorylation. Palmitate (0.1 mmol/L) abolished the glucose effect on ERK1/2, AKT, and SAPK/JNK phosphorylations. LY294002 caused a similar effect. The inhibitory effect of palmitate on glucose-induced ERK1/2 and AKT phosphorylation changes was not observed in the presence of fumonisin B1. Glucose increased c-fos and decreased c-jun expressions. Palmitate and LY294002 abolished these latter glucose effects. The presence of fumonisin B1 abolished the effect induced by palmitate on c-jun expression. Conclusions: Our results suggest that short-term changes of mitogen-activated protein kinase and AKT signaling pathways and c-fos and c-jun expressions caused by glucose are abolished by palmitate through phosphatidylinositol 3-kinase inhibition via ceramide synthesis.
Resumo:
Background: Brazil implemented routine immunization with the human rotavirus vaccine, Rotarix, in 2006 and vaccination coverage reached 81% in 2008 in Sao Paulo. Our aim was to assess the impact of immunization on the incidence of severe rotavirus acute gastroenteritis (AGE). Methods: We performed a 5-year (2004-2008) prospective surveillance at a sentinel hospital in Sao Paulo, with routine testing for rotavirus in all children less than 5 years of age hospitalized with AGE. Genotypes of positive samples were determined by reverse transcription polymerase chain reaction. Results: During the study, 655 children hospitalized with AGE were enrolled; of whom 169 (25.8%) were positive for rotavirus. In the post-vaccine period, a 59% reduction in the number of hospitalizations of rotavirus AGE and a 42.2% (95% confidence interval [CI], 18.6%-59.0%; P = 0.001) reduction in the proportion of rotavirus-positive results among children younger than 5 years were observed, with the greatest decline among infants (69.2%; 95% CI, 24.7%-87.4%; P = 0.004). Furthermore, the number of all-cause hospitalizations for AGE was reduced by 29% among children aged <5 years. The onset and peak incidences of rotavirus AGE occurred 3 months later in the 2007 and 2008 seasons compared with previous years. Genotype G2 accounted for 15%, 70%, and 100% of all cases identified, respectively, in 2006, 2007, and 2008. Conclusions: After vaccine implementation, a marked decline in rotavirus AGE hospitalizations was demonstrated among children younger than 5 years of age, with the greatest reduction in the age groups targeted for vaccination. The predominance of genotype G2P[4] highlights the need of continued postlicensure surveillance studies.
Resumo:
Background: Hemoglobin is a rich source of biologically active peptides, some of which are potent antimicrobials (hemocidins). A few hemocidins have been purified from the midgut contents of ticks. Nonetheless, how antimicrobials are generated in the tick midgut and their role in immunity is still poorly understood. Here we report, for the first time, the contribution of two midgut proteinases to the generation of hemocidins. Results: An aspartic proteinase, designated BmAP, was isolated from the midgut of Rhipicephalus (Boophilus) microplus using three chromatographic steps. Reverse transcription-quantitative polymerase chain reaction revealed that BmAP is restricted to the midgut. The other enzyme is a previously characterized midgut cathepsin L-like cysteine proteinase designated BmCL1. Substrate specificities of native BmAP and recombinant BmCL1 were mapped using a synthetic combinatorial peptide library and bovine hemoglobin. BmCL1 preferred substrates containing non-polar residues at P2 subsite and polar residues at P1, whereas BmAP hydrolysed substrates containing non-polar amino acids at P1 and P1`. Conclusions: BmAP and BmCL1 generate hemocidins from hemoglobin alpha and beta chains in vitro. We postulate that hemocidins may be important for the control of tick pathogens and midgut flora.
Resumo:
Arthropods display different mechanisms to protect themselves against infections, among which antimicrobial peptides (AMPs) play an important role, acting directly against invader pathogens. We have detected several factors with inhibitory activity against Candida albicans and Micrococcus luteus on the surface and in homogenate of eggs of the tick Rhipicephalus (Boophilus) microplus. One of the anti-M. luteus factors of the egg homogenate was isolated to homogeneity. Analysis by electrospray mass spectrometry (ESI-MS) revealed that it corresponds to microplusin, an AMP previously isolated from the cell-free hemolymph of X (B.) microplus. Reverse transcription (RT) quantitative polymerase chain reactions (qPCR) showed that the levels of microplusin mRNA gradually increase along ovary development, reaching an impressive highest value three days after the adult females have dropped from the calf and start oviposition. Interestingly, the level of microplusin mRNA is very low in recently laid eggs. An enhance of microplusin gene expression in eggs is observed only nine days after the onset of oviposition, achieving the highest level just before the larva hatching, when the level of expression decreases once again. Fluorescence microscopy analysis using an anti-microplusin serum revealed that microplusin is present among yolk granules of oocytes as well as in the connecting tube of ovaries. These results, together to our previous data. suggest that microplusin may be involved not only in protection of adult female hemocele, but also in protection of the female reproductive tract and embryos, what points this AMP as a considerable target for development of new methods to control R. (B.) microplus as well as the vector-borne pathogens. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Xylella fastidiosa is the etiologic agent of a wide range of plant diseases, including citrus variegated chlorosis (CVC), a major threat to citrus industry. The genomes of several strains of this phytopathogen were completely sequenced, enabling large-scale functional studies. DNA microarrays representing 2,608 (91.6%) coding sequences (CDS) of X. fastidiosa CVC strain 9a5c were used to investigate transcript levels during growth with different iron availabilities. When treated with the iron chelator 2,2`-dipyridyl, 193 CDS were considered up-regulated and 216 were considered down-regulated. Upon incubation with 100 mu M ferric pyrophosphate, 218 and 256 CDS were considered up- and down-regulated, respectively. Differential expression for a subset of 44 CDS was further evaluated by reverse transcription-quantitative PCR. Several CDS involved with regulatory functions, pathogenicity, and cell structure were modulated under both conditions assayed, suggesting that major changes in cell architecture and metabolism occur when X. fastidiosa cells are exposed to extreme variations in iron concentration. Interestingly, the modulated CDS include those related to colicin V-like bacteriocin synthesis and secretion and to functions of pili/fimbriae. We also investigated the contribution of the ferric uptake regulator Fur to the iron stimulon of X. fastidiosa. The promoter regions of the strain 9a5c genome were screened for putative Fur boxes, and candidates were analyzed by electrophoretic mobility shift assays. Taken together, our data support the hypothesis that Fur is not solely responsible for the modulation of the iron stimulon of X fastidiosa, and they present novel evidence for iron regulation of pathogenicity determinants.
Resumo:
Schistosomiasis affects more than 200 million people worldwide; another 600 million are at risk of infection. The schistosomulum stage is believed to be the target of protective immunity in the attenuated cercaria vaccine model. In an attempt to identify genes up-regulated in the schistosomulum stage in relation to cercaria, we explored the Schistosoma mansoni transcriptome by looking at the relative frequency of reads in EST libraries from both stages. The 400 genes potentially up-regulated in schistosomula were analyzed as to their Gene Ontology categorization, and we have focused on those encoding-predicted proteins with no similarity to proteins of other organisms, assuming they could be parasite-specific proteins important for survival in the host. Up-regulation in schistosomulum relative to cercaria was validated with real-time reverse transcription polymerase chain reaction (RT-PCR) for five out of nine selected genes (56%). We tested their protective potential in mice through immunization with DNA vaccines followed by a parasite challenge. Worm burden reductions of 16-17% were observed for one of them, indicating its protective potential. Our results demonstrate the value and caveats of using stage-associated frequency of ESTs as an indication of differential expression coupled to DNA vaccine screening in the identification of novel proteins to be further investigated as potential vaccine candidates.
Resumo:
Background Limited information is available on the role of human metapneumovirus (HMPV) as the unique pathogen among children hospitalized for community-acquired pneumonia (CAP) in a tropical region. Objective We aimed to describe HMPV infection among children with CAP investigating bacterial and viral co-infections. Patients and methods A prospective study was carried out in Salvador, North-East Brazil. Overall, 268 children aged <5 years hospitalized for CAP were enrolled. Human metapneumovirus RNA was detected in nasopharyngeal aspirates (NPA) by reverse transcription polymerase chain reaction. Sixteen other bacterial and viral pathogens were investigated by an expanded panel of laboratory methods. Chest X-ray taken on admission was read by an independent paediatric radiologist unaware of clinical information or the established aetiology. Results Human metapneumovirus RNA was detected in NPAs of 11 (4.1%) children, of which 4 (36%) had sole HMPV infection. The disease was significantly shorter among patients with sole HMPV infection in comparison with patients with mixed infection (4 +/- 1 versus 7 +/- 2 days, P = 0.03). Three of those four patients had alveolar infiltrates. Conclusion Sole HMPV infection was detected in children with CAP in Salvador, North-East Brazil. HMPV may play a role in the childhood CAP burden.
Resumo:
In order to investigate a putative role for nitric oxide (NO) in the central nociceptive processing following carrageenan-induced arthritis in the rat temporomandibular joint (TMJ), we analyzed the immunoreactivity, gene expression and activity of nitric oxide synthases (NOS) in the caudal part of the spinal trigeminal nucleus (Sp5C) during the acute (24 h), chronic (15 days) and chronic-active (14 days-24 h) arthritis. In addition, evaluation of head-withdrawal threshold was carried out in all phases of arthritis under chronic inhibition of nNOS with the selective inhibitor 7-nitroindazole (7-NI). Neurons with nNOS-like immunoreactivity (nNOS-LI) were concentrated mainly in the lamina II of the Sp5C, showing no significant statistical difference during arthritis. Only a discrete percentage of nNOS-LI neurons expressed Fos immunoreactivity. The mRNA expression for both nNOS and endothelial nitric oxide synthases (eNOS) presented no noticeable differences among the groups. No expression of inducible nitric oxide synthase (iNOS) was detected in the Sp5C by either immunohistochemistry or reverse-transcription polymerase chain reaction (RTPCR). Ca(2+)-dependent NOS activity in the ipsilateral Sp5C was significantly higher (108.3 +/- 49.2%; P<0.01) in animals during the chronic arthritis. Interestingly, this increased activity was completely abolished 24 h later, in the chronic-active arthritis. Finally, head-withdrawal threshold decreased significantly in the chronic arthritis in animals under 7-NI chronic inhibition. In conclusion, nNOS immunoreactivity and mRNA expression are stable in the Sp5C during TMJ arthritis evolution, but its activity significantly increases in the chronic-phases supporting an antinociceptive role of the nNOS as evidenced by pain threshold experiment. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Human metapneumovirus (hMPV) is a significant cause of acute lower respiratory tract infection in all age groups, particularly in children. Two genetic groups and four subgroups of hMPV have been described. They co-circulate during an epidemic in variable proportions. The aims were to characterize the genotypes of hMPV recovered from children hospitalized for acute lower respiratory tract infection and to establish the molecular epidemiology of strains circulating in Santiago of Chile during a 2-year period. The detection of the N gene by reverse-transcription polymerase chain reaction was carried out for screening 545 infants hospitalized for acute lower respiratory tract infection in Santiago during 2003-2004. The genetic typing of hMPV was performed by analyzing the fusion gene sequences. hMPV was detected in 10.2% (56/545 cases). Phylogenetic analysis of F gene sequences from 39 Chilean hMPV strains identified the two groups and four subgroups previously described. Strains clustered into group A were split further into the sub lineages A1, A2, and A3. Most Chilean strains clustered into the proposed novel A3 sub lineage (59%). A3 viruses were present in both years, while A1 and A2 circulated just in I year. In conclusion, hMPV is a relevant cause of acute lower respiratory infection in Chilean children and the potential novel cluster of group A emphasize the need for further regional genetic variability studies. J. Med. Virol. 81:340-344, 2009. (c) 2008 Wiley-Liss, Inc.
Resumo:
Background. Visceral leishmaniasis (VL) is caused by Leishmania donovani and Leishmania infantum chagasi. Genome-wide linkage studies from Sudan and Brazil identified a putative susceptibility locus on chromosome 6q27. Methods. Twenty-two single-nucleotide polymorphisms (SNPs) at genes PHF10, C6orf70, DLL1, FAM120B, PSMB1, and TBP were genotyped in 193 VL cases from 85 Sudanese families, and 8 SNPs at genes PHF10, C6orf70, DLL1, PSMB1, and TBP were genotyped in 194 VL cases from 80 Brazilian families. Family-based association, haplotype, and linkage disequilibrium analyses were performed. Multispecies comparative sequence analysis was used to identify conserved noncoding sequences carrying putative regulatory elements. Quantitative reverse-transcription polymerase chain reaction measured expression of candidate genes in splenic aspirates from Indian patients with VL compared with that in the control spleen sample. Results. Positive associations were observed at PHF10, C6orf70, DLL1, PSMB1, and TBP in Sudan, but only at DLL1 in Brazil (combined P = 3 x 10(-4) at DLL1 across Sudan and Brazil). No functional coding region variants were observed in resequencing of 22 Sudanese VL cases. DLL1 expression was significantly (P = 2 x 10(-7)) reduced (mean fold change, 3.5 [SEM, 0.7]) in splenic aspirates from patients with VL, whereas other 6q27 genes showed higher levels (1.27 x 10(-6) < P < .01) than did the control spleen sample. A cluster of conserved noncoding sequences with putative regulatory variants was identified in the distal promoter of DLL1. Conclusions. DLL1, which encodes Delta-like 1, the ligand for Notch3, is strongly implicated as the chromosome 6q27 VL susceptibility gene.