13 resultados para relaxation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The aim of this study was to analyze the contribution of nitric oxide, prostacyclin and endothelium-dependent hyperpolarizing factor to endothelium-dependent vasodilation induced by acetylcholine in rat aorta from control and ouabain-induced hypertensive rats. Preincubation with the nitric oxide synthase inhibitor N-omega-nitro-L-arginine methyl esther (L-NAME) inhibited the vasodilator response to acetylcholine in segments from both groups but to a greater extent in segments from ouabain-treated rats. Basal and acetylcholine-induced nitric oxide release were higher in segments from ouabain-treated rats. Preincubation with the prostacyclin synthesis Inhibitor tranylcypromine or with the cyclooxygenase inhibitor indomethacin inhibited the vasodilator response to acetylcholine in aortic segments front both groups. The Ca(2+)-dependent potassium channel blocker charybdotoxin inhibited the vasodilator response to acetylcholine only In segments from control rats. These results indicate that hypertension induced by chronic ouabain treatment is accompanied by increased endothelial nitric oxide participation and impaired endothelium-dependent hyperpolarizing factor contribution In acetylcholine-induced relaxation. These effects might explain the lack of effect of ouabain treatment oil acetylcholine responses in rat aorta.
Resumo:
Background and purpose: Overactive bladder is a complex and widely prevalent condition, but little is known about its physiopathology. We have carried out morphological, biochemical and functional assays to investigate the effects of long-term nitric oxide (NO) deficiency on muscarinic receptor and beta-adrenoceptor modulation leading to overactivity of rat detrusor muscle. Experimental approach: Male Wistar rats received No-nitro-L-arginine methyl ester (L-NAME) in drinking water for 7-30 days. Functional responses to muscarinic and b-adrenoceptor agonists were measured in detrusor smooth muscle (DSM) strips in Krebs-Henseleit solution. Measurements of [H-3] inositol phosphate, NO synthase (NOS) activity, [H-3] quinuclidinyl benzilate ([H-3]QNB) binding and bladder morphology were also performed. Key results: Long-term L-NAME treatment significantly increased carbachol-induced DSM contractile responses after 15 and 30 days; relaxing responses to the beta(3)-adrenoceptor agonist BRL 37-344 were significantly reduced at 30 days. Constitutive NOS activity in bladder was reduced by 86% after 7 days and maintained up to 30 days of L-NAME treatment. Carbachol increased sixfold the [H-3] inositol phosphate in bladder tissue from rats treated with L-NAME. [H-3] QNB was bound with an apparent KD twofold higher in bladder membranes after L-NAME treatment compared with that in control. No morphological alterations in DSM were found. Conclusions and implications: Long-term NO deficiency increased rat DSM contractile responses to a muscarinic agonist, accompanied by significantly enhanced KD values for muscarinic receptors and [H-3] inositol phosphate accumulation in bladder. This supersensitivity for muscarinic agonists along with reductions of beta(3)-adrenoceptor-mediated relaxations indicated that overactive DSM resulted from chronic NO deficiency.
Resumo:
Introduction. Coitus in snakes may last up to 28 hours; however, the mechanisms involved are unknown. Aim. To evaluate the relevance of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-phosphodiesterase type 5 (PDE5) system in snake corpus cavernosum reactivity. Methods. Hemipenes were removed from anesthetized South American rattlesnakes (Crotalus durissus terrificus) and studied by light and scanning electronic microscopy. Isolated Crotalus corpora cavernosa (CCC) were dissected from the non-spiny region of the hemipenises, and tissue reactivity was assessed in organ baths. Main Outcome Measures. Cumulative concentration-response curves were constructed for acetylcholine (ACh), sodium nitroprusside (SNP), 5-cyclopropyl-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4-ylamine (BAY 41-2272), and tadalafil in CCC precontracted with phenylephrine. Relaxation induced by electrical field stimulation (EFS) was also done in the absence and presence of N omega nitro-L-arginine methyl ester (L-NAME; 100 mu M), 1H-[1, 2, 4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 mu M) and tetrodotoxin (TTX; 1 mu M). Results. The hemipenes consisted of two functionally concentric corpora cavernosa, one of them containing radiating bundles of smooth muscle fibers (confirmed by alpha-actin immunostaining). Endothelial and neural nitric oxide synthases were present in the endothelium and neural structures, respectively; whereas soluble guanylate cyclase and PDE5 were expressed in trabecular smooth muscle. ACh and SNP relaxed isolated CCC, with the relaxations being markedly reduced by L-NAME and ODQ, respectively. BAY 41-2272 and tadalafil caused sustained relaxations with potency (pEC(50)) values of 5.84 +/- 0.17 and 5.10 +/- 0.08 (N = 3-4), respectively. In precontracted CCC, EFS caused frequency-dependent relaxations that lasted three times longer than those in mammalian CC. Although these relaxations were almost abolished by either L-NAME or ODQ, they were unaffected by TTX. In contrast, EFS-induced relaxations in marmoset CC were abolished by TTX. Conclusions. Rattlesnake CC relaxation is mediated by the NO-cGMP-PDE5 pathway in a manner similar to mammals. The novel TTX-resistant Na channel identified here may be responsible for the slow response of smooth muscle following nerve stimulation and could explain the extraordinary duration of snake coitus. Capel RO, Monica FZ, Porto M, Barillas S, Muscara MN, Teixeira SA, Arruda AMM, Pissinatti, L, Pissinatti A, Schenka AA, Antunes E, Nahoum C, Cogo JC, de Oliveira MA, and De Nucci G. Role of a novel tetrodotoxin-resistant sodium channel in the nitrergic relaxation of corpus cavernosum from the South American rattlesnake Crotalus durissus terrificus. J Sex Med 2011;8:1616-1625.
Resumo:
Industrial production processes involving both lot-sizing and cutting stock problems are common in many industrial settings. However, they are usually treated in a separate way, which could lead to costly production plans. In this paper, a coupled mathematical model is formulated and a heuristic method based on Lagrangian relaxation is proposed. Computational results prove its effectiveness. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Conventional procedures employed in the modeling of viscoelastic properties of polymer rely on the determination of the polymer`s discrete relaxation spectrum from experimentally obtained data. In the past decades, several analytical regression techniques have been proposed to determine an explicit equation which describes the measured spectra. With a diverse approach, the procedure herein introduced constitutes a simulation-based computational optimization technique based on non-deterministic search method arisen from the field of evolutionary computation. Instead of comparing numerical results, this purpose of this paper is to highlight some Subtle differences between both strategies and focus on what properties of the exploited technique emerge as new possibilities for the field, In oder to illustrate this, essayed cases show how the employed technique can outperform conventional approaches in terms of fitting quality. Moreover, in some instances, it produces equivalent results With much fewer fitting parameters, which is convenient for computational simulation applications. I-lie problem formulation and the rationale of the highlighted method are herein discussed and constitute the main intended contribution. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 113: 122-135, 2009
Resumo:
We show, by using a numerical analysis, that the dynamic toward equilibrium for an electrolytic cell subject to a step-like external electric field is a multirelaxation process when the diffusion coefficients of positive and negative ions are different. By assuming that the diffusion coefficient of positive ions is constant, we observe that the number of involved relaxation processes increases when the diffusion coefficient of the negative ions diminishes. Furthermore, two of the relaxation times depend nonmonotonically on the ratio of the diffusion coefficients. This result is unexpected, because the ionic drift velocity, by means of which the ions move to reach the equilibrium distribution, increases with increasing ionic mobility.
Resumo:
We analyze the influence of a surface dielectric layer on the transient phenomena related to the ionic redistribution in an electrolytic cell submitted to a step-like external voltage. The adsorption-desorption phenomenon is taken into account in the famework of the Gouy-Chapman approximation, where the ions are assumed dimensionless. In the limit of small amplitude of the applied voltage, where the equations of the problem can be linearized, we obtain an analytical solution for the surface densities of ions, for the electrical potential and for the relaxation time for the transient phenomena. In the general case, when the linearized analysis is no longer valid, the solution of the problem is obtained numerically. The role of the thickness of the dielectric layer on the relaxation time is also discussed.
Resumo:
We have performed a systematic study of the time and temperature dependencies of the electrical resistivity (rho(T, t)) inNd(0.5)Ca(0.5)Mn(1-x)Cr(x)O(3) single crystals with x = 0.02 and 0.07 in order to examine the dynamics of the phase separation. The relaxation effects can be described by the combination of a rapid exponential increase/decrease with a slower logarithmic contribution at longer times. The experimental results suggest the existence of a large temperature window in which huge relaxation effects occur, and the relative fraction of the coexisting phases rapidly changes as a function of time, depending on the initial magnetic state of the sample. The rho(T, t) relaxation measurements were shown to be a suitable tool for probing the dynamical nature of the phase separation, in which magnetically distinct phases compete against each other in a wide temperature range. In addition, the features observed in the rho(T, t) curves were found to be in excellent agreement with both the magnetic properties and the structural transitions observed in these manganites.
Resumo:
This article reports a relaxation study in an oriented system containing spin 3/2 nuclei using quantum state tomography (QST). The use of QST allowed evaluating the time evolution of all density matrix elements starting from several initial states. Using an appropriated treatment based on the Redfield theory, the relaxation rate of each density matrix element was measured and the reduced spectral densities that describe the system relaxation were determined. All the experimental data could be well described assuming pure quadrupolar relaxation and reduced spectral densities corresponding to a superposition of slow and fast motions. The data were also analyzed in the context of Quantum Information Processing, where the coherence loss of each qubit of the system was determined using the partial trace operation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
NMR quantum information processing studies rely on the reconstruction of the density matrix representing the so-called pseudo-pure states (PPS). An initially pure part of a PPS state undergoes unitary and non-unitary (relaxation) transformations during a computation process, causing a ""loss of purity"" until the equilibrium is reached. Besides, upon relaxation, the nuclear polarization varies in time, a fact which must be taken into account when comparing density matrices at different instants. Attempting to use time-fixed normalization procedures when relaxation is present, leads to various anomalies on matrices populations. On this paper we propose a method which takes into account the time-dependence of the normalization factor. From a generic form for the deviation density matrix an expression for the relaxing initial pure state is deduced. The method is exemplified with an experiment of relaxation of the concurrence of a pseudo-entangled state, which exhibits the phenomenon of sudden death, and the relaxation of the Wigner function of a pseudo-cat state.
Resumo:
In this work we applied a quantum circuit treatment to describe the nuclear spin relaxation. From the Redfield theory, we obtain a description of the quadrupolar relaxation as a computational process in a spin 3/2 system, through a model in which the environment is comprised by five qubits and three different quantum noise channels. The interaction between the environment and the spin 3/2 nuclei is described by a quantum circuit fully compatible with the Redfield theory of relaxation. Theoretical predictions are compared to experimental data, a short review of quantum channels and relaxation in NMR qubits is also present.
Resumo:
The nonadiabatic photochemistry of 6-azauracil has been studied by means of the CASPT2//CASSCF protocol and double-zeta plus polarization ANO basis sets. Minimum energy states, transition states, minimum energy paths, and surface intersections have been computed in order to obtain an accurate description of several potential energy hypersurfaces. It is concluded that, after absorption of ultraviolet radiation (248 nm), two main relaxation mechanisms may occur, via which the lowest (3)(pi pi*) state can be populated. The first one takes place via a conical intersection involving the bright (1)(pi pi*) and the lowest (1)(n pi*) states, ((1)pi pi*/(1)n pi*)(CI), from which a low energy singlet-triplet crossing, ((1)n pi*/(3)pi pi*)(STC), connecting the (1)(n pi*) state to the lowest (3)(pi pi*) triplet state is accessible. The second mechanism arises via a singlet-triplet crossing, ((1)pi pi*/(3)n pi*)(STC), leading to a conical intersection in the triplet manifold, ((3)n pi*/(3)pi pi*)(CI), evolving to the lowest (3)(pi pi*) state. Further radiationless decay to the ground state is possible through a (gs/(3)pi pi*)(STC).
Nuclear magnetic resonance water relaxation time changes in bananas during ripening: a new mechanism
Resumo:
BACKGROUND: Nuclear magnetic resonance studies of banana fragments during ripening show an increase on the water transverse relaxation time (T(2)) and a decrease in water self-diffusion coefficient (D). As T(2) and D are normally directly correlated, we studied these two properties in intact bananas during ripening, in an attempt to rule out the effect of injury on the apparent discrepancies in the behavior of T(2) and D. RESULTS: The results show that injury in bananas causes a decrease in T(2) of the water in vacuoles (T(2vac)). They also show that T(2vac) increased and D decreased during ripening, ruling out the injury effect. To explain the apparent discrepancies, we propose a new hypothesis for the increase in T(2) values, based on the reduction of Fe(3+) ions to Fe(2+) by galacturonic acid, produced by the hydrolysis of pectin and a decrease in internal oxygen concentration during ripening. CONCLUSION: As injury alters T(2) values it is necessary to use intact bananas to study relaxation times during ripening. The novel interpretation for the increase in T(2vac) based on reduction of Fe(+3) and O(2) concentration is an alternative mechanism to that based on the hydrolysis of starch in amyloplasts. (C) 2010 Society of Chemical Industry