2 resultados para racial makeup

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmodium falciparum is distributed throughout the tropics and is responsible for an estimated 230 million cases of malaria every year, with a further 1.4 billion people at risk of infection [1-3]. Little is known about the genetic makeup of P. falciparum populations, despite variation in genetic diversity being a key factor in morbidity, mortality, and the success of malaria control initiatives. Here we analyze a worldwide sample of 519 P. falciparum isolates sequenced for two housekeeping genes (63 single nucleotide polymorphisms from around 5000 nucleotides per isolate). We observe a strong negative correlation between within-population genetic diversity and geographic distance from sub-Saharan Africa (R(2) = 0.95) over Africa, Asia, and Oceania. In contrast, regional variation in transmission intensity seems to have had a negligible impact on the distribution of genetic diversity. The striking geographic patterns of isolation by distance observed in P. falciparum mirror the ones previously documented in humans [4-7] and point to a joint sub-Saharan African origin between the parasite and its host. Age estimates for the expansion of P. falciparum further support that anatomically modern humans were infected prior to their exit out of Africa and carried the parasite along during their colonization of the world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Interethnic admixture is a source of cryptic population structure that may lead to spurious genotype-phenotype associations in pharmacogenomic studies. We studied the impact of population stratification on the distribution of ABCB1 polymorphisms (1236C > T, 2677G > T/A and 3435C > T) among Brazilians, a highly admixed population with Amerindian, European and African ancestral roots. Methods: Individual DNA from 320 healthy adults was genotyped with a panel of ancestry informative markers, and the proportions of African component of ancestry (ACA) were estimated. ABCB1 genotypes were determined by the single base extension/termination method. We describe the association between ABCB1 polymorphisms and ACA by fitting a linear proportional odds logistic regression model to the data. Results: The distribution of the ABCB1 2677G > T/A and 3435C > T, but not the 1236C > T, SNPs displayed a significant trend for decreasing frequency of the T alleles and TT genotypes from White to Intermediate to Black individuals. The same trend was observed in the frequency of the T/nonG/T haplotype at the 1236, 2677 and 3435 loci. When the population sample was proportioned in quartiles, according to the individual ACA estimates, the frequency of the T allele and TT genotype at each locus declined progressively from the lowest (< 0.25 ACA) to the highest (> 0.75 ACA) quartile. Linear proportional odds logistic regression analysis confirmed that the odds of having the T allele at each locus decreases in a continuous manner with the increase of the ACA, throughout the ACA range (0.13-0.94) observed in the overall population sample. A significant association was also detected between the individual ACA estimates and the presence of the T/nonG/T haplotype in the overall population. Conclusion: Self-identification according to the racial/color categories proposed by the Brazilian Census is insufficient to properly control for population stratification in pharmacogenomic studies of ABCB1.