5 resultados para proton-rich nuclei

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tunneling of composite systems, where breakup may occur during the barrier penetration process, is considered in connection with the fusion of halo-like radioactive, neutron- and proton-rich nuclei, on heavy targets. The large amount of recent and new data clearly indicates that breakup hinders the fusion at energies near and below the Coulomb barrier. However, clear evidence for enhancement due to halo properties seems to over ride the breakup hindrance at lower energies, owing, to a large extent, to the extended matter density distribution. In particular we report here that at sub-barrier energies the fusion cross section of the Borromean two-neutron halo nucleus (6)He with the actinide nucleus (238)U is significantly enhanced as compared to the fusion of a similar projectile with no halo. This conclusion differs from that of the original work, where it was claimed that no such enhancement ensues. This sub-barrier fusion enhancement is also observed in the (6)He + (209)Bi system. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent experiments have shown that the multimode approach for describing the fission process is compatible with the observed results. Asystematic analysis of the parameters obtained by fitting the fission-fragment mass distribution to the spontaneous and low-energy data has shown that the values for those parameters present a smooth dependence upon the nuclear mass number. In this work, a new methodology is introduced for studying fragment mass distributions through the multimode approach. It is shown that for fission induced by energetic probes (E > 30 MeV) the mass distribution of the fissioning nuclei produced during the intranuclear cascade and evaporation processes must be considered in order to have a realistic description of the fission process. The method is applied to study (208)Pb, (238)U, (239)Np and (241)Am fission induced by protons or photons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the effects of final state interactions in two-proton emission by nuclei. Our approach is based on the solution the time-dependent Schrodinger equation. We show that the final relative energy between the protons is substantially influenced by the final state interactions. We also show that alternative correlation functions can be constructed showing large sensitivity to the spin of the diproton system. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elastic scattering of (8)B and (7)Be on a (58)Ni target has been measured at energies near the Coulomb barrier. The total reaction cross sections were deduced from Optical-model fits to the experimental angular distributions. Comparison with other systems shows evidence for proton-halo effects on (8)B, as well as for neutron-halo on (6)He reactions. While the enhancement in the cross section observed for (8)B is explained in terms of projectile breakup, in the case of (6)He reactions, the particle transfer proces explains the observed enhancement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross sections for the (6)Li(p,gamma)(7)Be, (7)Li(n,gamma)(8)Li (8)Li(n,gamma)(9)Li and (8)Li(p,gamma)(9)Be capture reactions have been investigated in the framework of the potential model. The main ingredients of the potential model are the potentials used to generate the continuum and bound-state wave functions and spectroscopic factors of the corresponding bound systems. The spectroscopic factors for the (7)Li circle times n=(8)Li(gs), (8)Li circle times n=(9)Li(gs) bound systems were obtained from a FR-DWBA analysis of neutron transfer reactions induced by (8)Li radioactive beam on a (9)Be target, while spetroscopic factor for the (8)Li circle times n=(9)Be(gs) bound system were obained from a proton transfer reaction. From the obtained capture reaction cross section, reaction rate for the (8)Li(n,gamma)(9)Li and (8)Li(p,gamma)(9)Be direct neutron and proton capture were determined and compared with other experimental and calculated values.