5 resultados para protocol of prevention
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Purpose: This clinical study aimed to evaluate initial, 4-months, and 1-year stability of immediately loaded dental implants inserted according to a protocol of lower rehabilitation with prefabricated bars. Materials and Methods: The sample was composed of 11 edentulous patients. In each patient, 4 interforaminal implants were inserted. Immediately after implant installation, resonance frequency analysis (RFA) for each fixation was registered as well as after 4 months and 1 year with the prosthetic bar removed as it is a screwed system. Results: The clinical implant survival rate was 100%. The RFA showed an increase in stability after 4 months from 64.09 +/- 648 to 64.31 +/- 4.96 and I year, 67.11 +/- 4.37. The analysis of variance showed a statistically significant result (P = 0.015) among implant stability quotient values for the different periods evaluated. Tukey test results showed statistically significant differences between 1-year results and the initial periods but there was no statistically significant difference between initial and 4-month results (P > 0.05). Conclusion: These preliminary 1-year results indicate that immediate loading of mandibular dental implants using the studied prefabricated bars protocol is a reliable treatment as it is in accordance with the results described in the literature for other similar techniques. (Implant Dent 2009; 18:530-538)
Resumo:
Acca sellowiana (Berg.) Burr. is a native Myrtaceae from southern Brazil and Uruguay, now the subject of a domestication and breeding program. Biotechnological tools have been used to assist in this program. The establishment of a reliable protocol of somatic embryogenesis has been pursued, with a view to capturing and fixing genetic gains. The rationale behind this work relies on the fact that deepening comprehension of the general metabolism of zygotic embryogenesis may certainly improve the protocol for somatic embryogenesis. Thus, in the present work we studied the accumulation of protein, total sugars, starch, amino acids, polyamines (PAs), IAA and ABA, in different stages of A. sellowiana zygotic embryogenesis. Starch is the predominant storage compound during zygotic embryo development. Increased synthesis of amino acids in the cotyledonary stage, mainly of asparagine, was observed throughout development. Total free PAs showed increased synthesis, whereas total conjugated PAs were mainly observed in the early developmental stages. IAA decreased and ABA increased with the progression from early to late embryogenesis. Besides providing basic information on the morphophysiological and biochemical changes of zygotic embryogenesis, the results here obtained may provide adequate strategies towards the modulation of somatic embryogenesis in this species as well as in other woody angiosperms.
Resumo:
A protocol of physical exercise, based on maximal oxygen uptake ((V) over dot(O2max)), for female rats before and during pregnancy was developed to evaluate the impact of a low-protein diet on oxygen consumption during gestation and growth rate of the offspring. Virgin female Wistar rats were divided into four groups as follows: untrained (NT, n = 5); trained (T, n = 5); untrained with low-protein diet (NT+LP, n = 5); and trained with low-protein diet (T+LP, n = 5). Trained rats were submitted to a protocol of moderate physical training on a treadmill over a period of 4 weeks (5 days week(-1) and 60 min day(-1), at 65% of (V) over dot(O2max)). At confirmation of pregnancy, the intensity and duration of the exercise was reduced. Low-protein groups received an 8% casein diet, and their peers received a 17% casein diet. The birthweight and growth rate of the pups up to the 90th day were recorded. Oxygen consumption ((V) over dot(O2)), CO(2) production and respiratory exchange ratio (RER) were determined using an indirect open-circuit calorimeter. Exercise training increased. (V) over dot(O2max) by about 20% when compared with the initial values (45.6 +/- 1.0 ml kg(-1) min(-1)). During gestation, all groups showed a progressive reduction in the resting (V) over dot(O2) values. Dams in the NT+LP group showed lower values of resting (V) over dot(O2) than those in the NT group. The growth rate of pups from low-protein-fed mothers was around 50% lower than that of their respective controls. The T group showed an increase in body weight from the 60th day onwards, while the NT+LP group presented a reduced body weight from weaning onwards. In conclusion, physical training attenuated the impact of the low- protein
Resumo:
The protective effect of short-term creatine supplementation (CrS) upon markers of strenuous contractile activity-induced damage in human and rat skeletal muscles was investigated. Eight Ironman triathletes were randomized into the placebo (Pl; n = 4) and creatine-supplemented (CrS; n = 4) groups. Five days prior to the Ironman competition, the CrS group received creatine monohydrate (20 g day(-1)) plus maltodextrin (50 g) divided in two equal doses. The Pl group received maltodextrin (50 g day(-1)) only. The effect of CrS (5 g day(-1)/kg body weight for 5 days) was also evaluated in a protocol of strenuous contractile activity induced by electrical stimulation in rats. Blood samples were collected before and 36 and 60 h after the competition and were used to determine plasma activities of creatine kinase (CK), lactate dehydrogenase (LDH), aldolase (ALD), glutamic oxaloacetic acid transaminase (GOT), glutamic pyruvic acid transaminase (GPT), and C-reactive protein (CRP) level. In rats, plasma activities of CK and LDH, muscle vascular permeability (MVP) using Evans blue dye, muscle force and fatigue were evaluated. Activities of CK, ALD, LDH, GOT, GTP, and levels of CRP were increased in the Pl group after the competition as compared to basal values. CrS decreased plasma activities of CK, LDH, and ALD, and prevented the rise of GOT and GPT plasma activities. In rats, CrS delayed the fatigue, preserved the force, and prevented the rise of LDH and CK plasma activities and MVP in the gastrocnemius muscle. CrS presented a protective effect on muscle injury induced by strenuous contractile activities.
Resumo:
Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel