30 resultados para proteomic profiling

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The aim of this study was to identify novel candidate biomarker proteins differentially expressed in the plasma of patients with early stage acute myocardial infarction (AMI) using SELDI-TOF-MS as a high throughput screening technology. Methods: Ten individuals with recent acute ischemic-type chest pain (< 12 h duration) and ST-segment elevation AMI (1STEMI) and after a second AMI (2STEMI) were selected. Blood samples were drawn at six times after STEMI diagnosis. The first stage (T(0)) was in Emergency Unit before receiving any medication, the second was just after primary angioplasty (T(2)), and the next four stages occurred at 12 h intervals after T(0). Individuals (n = 7) with similar risk factors for cardiovascular disease and normal ergometric test were selected as a control group (CG). Plasma proteomic profiling analysis was performed using the top-down (i.e. intact proteins) SELDI-TOF-MS, after processing in a Multiple Affinity Removal Spin Cartridge System (Agilent). Results: Compared with the CG, the 1STEMI group exhibited 510 differentially expressed protein peaks in the first 48 h after the AMI (p < 0.05). The 2STEMI group, had similar to 85% fewer differently expressed protein peaks than those without previous history of AMI (76, p < 0.05). Among the 16 differentially-regulated protein peaks common to both STEMI cohorts (compared with the CG at T(0)), 6 peaks were persistently down-regulated at more than one time-stage, and also were inversed correlated with serum protein markers (cTnI, CK and CKMB) during 48 h-period after IAM. Conclusions: Proteomic analysis by SELDI-TOF-MS technology combined with bioinformatics tools demonstrated differential expression during a 48 h time course suggests a potential role of some of these proteins as biomarkers for the very early stages of AMI, as well as for monitoring early cardiac ischemic recovery. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neutrophilic granulocytes play a major role in the initiation and resolution of the inflammatory response, and demonstrate significant transcriptional and translational activity. Although much was known about neutrophils prior to the introduction of proteomics, the use of MS-based methodologies has provided an unprecedented tool to confirm and extend previous findings. In the present study, we performed a Gel-LC-MS/MS analysis of neutrophil detergent insoluble and whole cell lysate fractions of resting neutrophils. We achieved a set of identifications through the use of high-resolution mass spectrometry and validation of its data. We identified a total of 1249 proteins with a wide range of intensities from both detergent-insoluble and whole cell lysate fractions, allowing a mapping of proteins such as those involved in intracellular transport (Rab and Sec family proteins) and cell signaling (S100 proteins). These results represent the most comprehensive proteomic characterization of resting human neutrophils to date, and provide important information relevant for further studies of the immune system in health and disease. The methods applied here can be employed to help us understand how neutrophils respond to various physiologic and pathophysiologic conditions and could be extended to protein quantitation after cell activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study reported here is a classical bottom-up proteomic approach where proteins from wasp venom were extracted and separated by 2-DE; the individual protein spots were proteolytically digested and subsequently identified by using tandem mass spectrometry and database query with the protein search engine MASCOT. Eighty-four venom proteins belonging to 12 different molecular functions were identified. These proteins were classified into three groups; the first is constituted of typical venom proteins: antigens-5, hyaluronidases, phospholipases, heat shock proteins, metalloproteinases, metalloproteinase-desintegrin like proteins, serine proteinases, proteinase inhibitors, vascular endothelial growth factor-related protein, arginine kinases, Sol i-II and -II like proteins, alpha-glucosidase, and superoxide dismutases. The second contained proteins structurally related to the muscles that involves the venom reservoir. The third group, associated with the housekeeping of cells from venom glands, was composed of enzymes, membrane proteins of different types, and transcriptional factors. The composition of P. paulista venom permits us to hypothesize about a general envenoming mechanism based on five actions: (i) diffusion of venom through the tissues and to the blood, (ii) tissue, (iii) hemolysis, (iv) inflammation, and (v) allergy-played by antigen-5, PLA1, hyaluronidase, HSP 60, HSP 90, and arginine kinases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein kinase C (PKC) plays a key role in embryonic stem cell (ESC) proliferation, self-renewal and differentiation However, the function of specific PKC Isoenzymes have yet to be determined Of the PKCs expressed in undifferentiated ESCs, beta IPKC was the only isoenzyme abundantly expressed in the nuclei To investigate the role of beta IPKC in these cells, we employed a phosphoproteomics strategy and used two classical (cPKC) peptide modulators and one beta IPKC-specific inhibitor peptide We identified 13 nuclear proteins that are direct or indirect beta IPKC substrates in undifferentiated ESCs These proteins are known to be involved in regulating transcription, splicing, and chromatin remodeling during proliferation and differentiation Inhibiting beta IPKC had no effect on DNA synthesis in undifferentiated ESCs However, upon differentiation many cells seized to express beta IPKC and beta IPKC was frequently found in the cytoplasm Taken together, our results suggest that beta IPKC takes part in the processes that maintain ESCs in their undifferentiated state

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST) collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results: The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS) categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion: In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mating sign that each drone leaves when mating with a queen essentially consists of mucus gland proteins. We employed a Representational Difference Analysis (RDA) methodology to identify genes that are differentially expressed in mucus glands during sexual maturation of drones. The RDA library for mucus glands of newly emerged drones was more complex than that of 8 day-old drones, with matches to 20 predicted genes. Another 26 reads matched to the Apis genome but not to any predicted gene. Since these ESTs were located within ORFs they may represent novel honey bee genes, possibly fast evolving mucus gland proteins. In the RDA library for mucus glands of 8 day-old drones, most reads corresponded to a capsid protein of deformed wing virus, indicating high viral loads in these glands. The expression of two genes encoding venom allergens, acid phosphatase-1 and hyaluronidase, in drone mucus glands argues for their homology with the female venom glands, both associated with the reproductive system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Neutrophils are the most abundant leukocytes in peripheral blood and represent one of the most important elements of innate immunity. Recent subcellular proteomic studies have focused on the identification of human neutrophil proteins in various subcellular membrane and granular fractions. Although there are relatively few studies dealing with the analysis of the total extract of human neutrophils, many biological problems such as the role of chemokines, adhesion molecules, and other activating inputs involved in neutrophil responses and signaling can be approached on the basis of the identification of the total cellular proteins. Results: Using gel-LC-MS/MS, 251 total cellular proteins were identified from resting human neutrophils. This is more than ten times the number of proteins identified by an initial proteome analysis of human neutrophils and almost five times the number of proteins identified by the first 2-DE map of extracts of rat polymorphonuclear leukocytes. Most of the proteins identified in the present study are well-known, but some of them, such as neutrophil-secreted proteins and centaurin beta-1, a cytoplasmic protein involved in the regulation of NF-kappa B activity, are described here for the first-time. Conclusion: The present report provides new information about the protein content of human neutrophils. Importantly, our study resulted in the discovery of a series of proteins not previously reported to be associated with human neutrophils. These data are relevant to the investigation of comparative pathological states and models for novel classes of pharmaceutical drugs that could be useful in the treatment of inflammatory disorders in which neutrophils participate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: High-throughput molecular approaches for gene expression profiling, such as Serial Analysis of Gene Expression (SAGE), Massively Parallel Signature Sequencing (MPSS) or Sequencing-by-Synthesis (SBS) represent powerful techniques that provide global transcription profiles of different cell types through sequencing of short fragments of transcripts, denominated sequence tags. These techniques have improved our understanding about the relationships between these expression profiles and cellular phenotypes. Despite this, more reliable datasets are still necessary. In this work, we present a web-based tool named S3T: Score System for Sequence Tags, to index sequenced tags in accordance with their reliability. This is made through a series of evaluations based on a defined rule set. S3T allows the identification/selection of tags, considered more reliable for further gene expression analysis. Results: This methodology was applied to a public SAGE dataset. In order to compare data before and after filtering, a hierarchical clustering analysis was performed in samples from the same type of tissue, in distinct biological conditions, using these two datasets. Our results provide evidences suggesting that it is possible to find more congruous clusters after using S3T scoring system. Conclusion: These results substantiate the proposed application to generate more reliable data. This is a significant contribution for determination of global gene expression profiles. The library analysis with S3T is freely available at http://gdm.fmrp.usp.br/s3t/.S3T source code and datasets can also be downloaded from the aforementioned website.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cytoadherence of Plasmodium falciparum-infected red blood cells is mediated by var gene-encoded P. falciparum erythrocyte membrane protein-1 and host receptor preference depends in most cases on which of the 50-60 var genes per genome is expressed. Enrichment of phenotypically homogenous parasites by panning on receptor expressing cells is fundamental for the identification of the corresponding var transcript. Methods: P. falciparum 3D7 parasites were panned on several transfected CHO-cell lines and their var transcripts analysed by i) reverse transcription/PCR/cloning/sequencing using a universal DBL alpha specific oligonucleotide pair and ii) by reverse transcription followed by quantitative PCR using 57 different oligonucleotide pairs. Results: Each cytoadherence selected parasite line also adhered to untransfected CHO-745 cells and upregulation of the var gene PFD995/PFD1000c was consistently associated with cytoadherence to all but one CHO cell line. In addition, parasites panned on different CHO cell lines revealed candidate var genes which reproducibly associated to the respective cytoadherent phenotype. The transcription profile obtained by RT-PCR/cloning/sequencing differed significantly from that of RT-quantitative PCR. Conclusion: Transfected CHO cell lines are of limited use for the creation of monophenotypic cytoadherent parasite lines. Nevertheless, 3D7 parasites can be reproducibly selected for the transcription of different determined var genes without genetic manipulation. Most importantly, var transcription analysis by RT-PCR/cloning/sequencing may lead to erroneous interpretation of var transcription profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocotea catharinensis is a rare tree species indigenous to the Atlantic rainforest of South America. In spite of its value as a hardwood species, it is in danger of extinction. The species erratically produces seeds showing irregular flowering and slow growth. Therefore, plants are not easily replaced. Tissue culture-based techniques are commonly used for obtaining living material for tree propagation and in vitro preservation. Therefore, a high-frequency somatic embryogenic system was developed for the species. In the present work, the genetic fidelity of cell aggregates and somatic embryos at various stages of in vitro development of O. catharinensis was investigated using RAPD and AFLP markers. Both analyses confirmed the absence of genetic variation in all developmental stages of O. catharinensis embryogenic cultures, verifying that the in vitro system is genetically stable. The cultures were also analyzed for their methylation profiles at 5`-CCGG-3` sites by identifying methylation-sensitive amplification polymorphisms. Some of these markers differentiated cell aggregates from embryo bodies. The sequencing of ten MSAP markers revealed that four sequences showed significant similarity to genes encoding plant proteins. Particularly, the predicted amino acid sequence of the fragment designated as OcEaggHMttc155 was similar to the enzyme 1-aminocyclopropane-1-carboxylate oxidase (ACO), which is involved in the biosynthesis of ethylene, and its expression was reported to occur from the beginning to the intermediate stages of plant embryo development. Here, we suggest that this enzyme is possibly involved in the control of the earliest stages of somatic embryogenesis of O. catharinensis, and an approach to study ACO expression during somatic embryogenesis is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the importance of Eucalyptus spp. in the pulp and paper industry, functional genomic approaches have only recently been applied to understand wood formation in this genus. We attempted to establish a global view of gene expression in the juvenile cambial region of Eucalyptus grandis Hill ex Maiden. The expression profile was obtained from serial analysis of gene expression (SAGE) library data produced from 3- and 6-year-old trees. Fourteen-base expressed sequence tags (ESTs) were searched against public Eucalyptus ESTs and annotated with GenBank. Altogether 43,304 tags were generated producing 3066 unigenes with three or more copies each, 445 with a putative identity, 215 with unknown function and 2406 without an EST match. The expression profile of the juvenile cambial region revealed the presence of highly frequent transcripts related to general metabolism and energy metabolism, cellular processes, transport, structural components and information pathways. We made a quantitative analysis of a large number of genes involved in the biosynthesis of cellulose, pectin, hemicellulose and lignin. Our findings provide insight into the expression of functionally related genes involved in juvenile wood formation in young fast-growing E. grandis trees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Papaya (Carica papaya L) fruit has a short shelf life due to fast ripening induced by ethylene, but little is known about the genetic control of ripening and attributes of fruit quality. Therefore, we identified ripening-related genes affected by ethylene using cDNA-AFLP (Amplified Fragment Length Polymorphism of cDNA). Transcript profiling of non-induced and ethylene-induced fruit samples was performed, and 71 differentially expressed genes were identified. Among those genes some involved in ethylene biosynthesis, regulation of transcription, and stress responses or plant defence were found (heat shock proteins, polygalacturonase-inhibiting protein, and acyl-CoA oxidases). Several transcription factors were isolated, and except for a 14-3-3 protein, an AP2 domain-containing factor, a salt-tolerant zinc finger protein, and a suppressor of PhyA-105 1, most of them were negatively affected by ethylene, including fragments of transcripts similar to VRN1, and ethylene responsive factors (ERF). With respect to fruit quality, genes related to cell wall structure or metabolism, volatiles or pigment precursors, and vitamin biosynthesis were also found. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metarhizium spp. is an important worldwide group of entomopathogenic fungi used as an interesting alternative to chemical insecticides in programs of agricultural pest and disease vector control. Metarhizium conidia are important in fungal propagation and also are responsible for host infection. Despite their importance, several aspects of conidial biology, including their proteome, are still unknown. We have established conidial and mycelial proteome reference maps for Metarhizium acridum using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF MS). In all, 1130 +/- 102 and 1200 +/- 97 protein spots were detected in ungerminated conidia and fast-growing mycelia, respectively. Comparison of the two protein-expression profiles reveled that only 35 % of the protein spots were common to both developmental stages. Out of 94 2-DE protein spots (65 from conidia, 25 from mycelia and two common to both) analyzed using mass spectrometry, seven proteins from conidia, 15 from mycelia and one common to both stages were identified. The identified protein spots exclusive to conidia contained sequences similar to known fungal stress-protector proteins (such as heat shock proteins (HSP) and 6-phosphogluconate dehydrogenase) plus the fungal allergen Alt a 7, actin and the enzyme cobalamin-independent methionine synthase. The identified protein spots exclusive to mycelia included proteins involved in several cell housekeeping biological processes. Three proteins (HSP 90, 6-phosphogluconate dehydrogenase and allergen Alt a 7) were present in spots in conidial and mycelial gels, but they differed in their locations on the two gels. (c) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To identify papillary thyroid carcinoma (PTC)-associated transcripts, we compared the gene expression profiles of three Serial Analysis of Gene Expression libraries generated from thyroid tumors and a normal thyroid tissue. Experimental Design: Selected transcripts were validated in a panel of 57 thyroid tumors using quantitative PCR (qPCR). An independent set of 71 paraffin-embedded sections was used for validation using immunohistochemical analysis. To determine if PTC-associated gene expression could predict lymph node involvement, a separate cohort of 130 primary PTC (54 metastatic and 76 nonmetastatic) was investigated. The BRAF(V600E) mutational status was compared with qPCR data to identify genes that might be regulated by abnormal BRAF/MEK/extracellular signal-regulated kinase signaling. Results: We identified and validated new PTC-associated transcripts. Three genes (CST6, CXCL14, and DHRS3) are strongly associated with PTC. Immunohistochemical analysis of CXCL14 confirmed the qPCR data and showed protein expression in PTC epithelial cells. We also observed that CST6, CXCL14, DHRS3, and SPP1 were associated with PTC lymph node metastasis, with CST6, CXCL14, and SPP1 being positively correlated with metastasis and DHRS3 being negatively correlated. Finally, we found a strong correlation between CST6 and CXCL14 expression and BRAF(V600E) mutational status, suggesting that these genes may be induced subsequently to BRAF activation and therefore may be downstream in the BRAF/MEK/extracellular signal-regulated kinase signaling pathway. Conclusion: CST6, CXCL14, DHRS3, and SPP1 may play a role in PTC pathogenesis and progression and are possible molecular targets for FTC therapy.