28 resultados para protective immunity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms responsible for the generation and maintenance of immunological memory to Plasmodium are poorly understood and the reasons why protective immunity in humans is so difficult to achieve and rapidly lost remain a matter for debate. A possible explanation for the difficulty in building up an efficient immune response against this parasite is the massive T cell apoptosis resulting from exposure to high-dose parasite Ag. To determine the immunological mechanisms required for long-term protection against P. chabaudi malaria and the consequences of high and low acute phase parasite loads for acquisition of protective immunity, we performed a detailed analysis of T and B cell compartments over a period of 200 days following untreated and drug-treated infections in female C57BL/6 mice. By comparing several immunological parameters with the capacity to control a secondary parasite challenge, we concluded that loss of full protective immunity is not determined by acute phase parasite load nor by serum levels of specific IgG2a and IgG1. Abs, but appears to be a consequence of the progressive decline in memory T cell response to parasites, which occurs similarly in untreated and drug-treated mice with time after infection. Furthermore, by analyzing adoptive transfer experiments, we confirmed the major role of CD4(+) T cells for guaranteeing long-term full protection against P. chabaudi malaria. The Journal of Immunology, 2008, 181: 8344-8355.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shiga-like toxin 2 (Stx2)-producing enterohemorrhagic Escherichia coli (referred to as EHEC or STEC) strains are the primary etiologic agents of hemolytic-uremic syndrome (HUS), which leads to renal failure and high mortality rates. Expression of Stx2 is the most relevant virulence-associated factor of EHEC strains, and toxin neutralization by antigen-specific serum antibodies represents the main target for both preventive and therapeutic anti-HUS approaches. In the present report, we describe two Salmonella enterica serovar Typhimurium aroA vaccine strains expressing a nontoxic plasmid-encoded derivative of Stx2 (Stx2 Delta AB) containing the complete nontoxic A2 subunit and the receptor binding B subunit. The two S. Typhimurium strains differ in the expression of flagellin, the structural subunit of the flagellar shaft, which exerts strong adjuvant effects. The vaccine strains expressed Stx2 Delta AB, either cell bound or secreted into the extracellular environment, and showed enhanced mouse gut colonization and high plasmid stability under both in vitro and in vivo conditions. Oral immunization of mice with three doses of the S. Typhimurium vaccine strains elicited serum anti-Stx2B (IgG) antibodies that neutralized the toxic effects of the native toxin under in vitro conditions (Vero cells) and conferred partial protection under in vivo conditions. No significant differences with respect to gut colonization or the induction of antigen-specific antibody responses were detected in mice vaccinated with flagellated versus nonflagellated bacterial strains. The present results indicate that expression of Stx2 Delta AB by attenuated S. Typhimurium strains is an alternative vaccine approach for HUS control, but additional improvements in the immunogenicity of Stx2 toxoids are still required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Production of verocytotoxin or Shiga-like toxin (Stx), particularly Stx2, is the basis of hemolytic uremic syndrome, a frequently lethal outcome for subjects infected with Stx2-producing enterohemorrhagic Escherichia coli (EHEC) strains. The toxin is formed by a single A subunit, which promotes protein synthesis inhibition in eukaryotic cells, and five B subunits, which bind to globotriaosylceramide at the surface of host cells. Host enzymes cleave the A subunit into the A(1) peptide, endowed with N-glycosidase activity to the 28S rRNA, and the A(2) peptide, which confers stability to the B pentamer. We report the construction of a DNA vaccine (pStx2 Delta AB) that expresses a nontoxic Stx2 mutated form consisting of the last 32 amino acids of the A(2) sequence and the complete B subunit as two nonfused polypeptides. Immunization trials carried out with the DNA vaccine in BALB/c mice, alone or in combination with another DNA vaccine encoding granulocyte-macrophage colony-stimulating factor, resulted in systemic Stx-specific antibody responses targeting both A and B subunits of the native Stx2. Moreover, anti-Stx2 antibodies raised in mice immunized with pStx2 Delta AB showed toxin neutralization activity in vitro and, more importantly, conferred partial protection to Stx2 challenge in vivo. The present vector represents the second DNA vaccine so far reported to induce protective immunity to Stx2 and may contribute, either alone or in combination with other procedures, to the development of prophylactic or therapeutic interventions aiming to ameliorate EHEC infection-associated sequelae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five community-based cross-sectional surveys of malaria morbidity and associated risk factors in remote riverine populations in northwestern Brazil showed average parasite rates of 4.2% (thick-smear microscopy) and 14.4% (polymerase chain reaction [PCR]) in the overall population, with a spleen rate of 13.9% among children 2-9 years of age. Plasmodium vivax was 2.8 times more prevalent than P. falciparum, with rare instances of P. malariae and mixed-species infections confirmed by PCR; 9.6% of asymptomatic subjects had parasitemias detected by PCR. Low-grade parasitemia detected by PCR only was a risk factor for anemia, after controlling for age and other covariates. Although clinical and subclinical infections occurred in all age groups, the risk of infection and disease decreased significantly with increasing age, after adjustment for several covariates in multilevel logistic regression models. These findings suggest that the continuous exposure to hypo- or mesoendemic malaria may induce significant anti-parasite and anti-disease immunity in native Amazonians.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coil and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His6FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund`s adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Germline mutations in CYBB, the human gene encoding the gp91(phox) subunit of the phagocyte NADPH oxidase, impair the respiratory burst of all types of phagocytes and result in X-linked chronic granulomatous disease (CGD). We report here two kindreds in which otherwise healthy male adults developed X-linked recessive Mendelian susceptibility to mycobacterial disease (MSMD) syndromes. These patients had previously unknown mutations in CYBB that resulted in an impaired respiratory burst in monocyte-derived macrophages but not in monocytes or granulocytes. The macrophage-specific functional consequences of the germline mutation resulted from cell-specific impairment in the assembly of the NADPH oxidase. This `experiment of nature` indicates that CYBB is associated with MSMD and demonstrates that the respiratory burst in human macrophages is a crucial mechanism for protective immunity to tuberculous mycobacteria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study evaluated the immunogenicity of new malaria vaccine formulations based on the 19 kDa C-terminal fragment of Plasmodium vivax Merozoite Surface Protein-1 (MSP1(19)) and the Salmonella enterica serovar Typhimurium flagellin (FIiC), a Toll-like receptor 5 (TLR5) agonist. FHC was used as an adjuvant either admixed or genetically linked to the P. vivax MSP1(19) and administered to C57BL/6 mice via parenteral (s.c.) or mucosal (i.n.) routes. The recombinant fusion protein preserved MSP1(19) epitopes recognized by Sera collected from P. vivax infected humans and TLR5 agonist activity. Mice parenterally immunized with recombinant P vivax MSPI 19 in the presence of FliC, either admixed or genetically linked, elicited strong and long-lasting MSP1 (19)-specific systemic antibody responses with a prevailing IgG1 subclass response. Incorporation of another TLR agonist, CpG ODN 1826, resulted in a more balanced response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response measured by interferon-gamma secretion. Finally, we show that MSPI 19-specific antibodies recognized the native protein expressed on the surface of P. vivax parasites harvested from infected humans. The present report proposes a new class of malaria vaccine formulation based on the use of malaria antigens and the innate immunity agonist FliC. it contains intrinsic adjuvant properties and enhanced ability to induce specific humoral and cellular immune responses when administered alone or in combination with other adjuvants. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oral pathogen Streptococcus mutans expresses a surface protein, P1, which interacts with the salivary pellicle on the tooth surface or with fluid-phase saliva, resulting in bacterial adhesion or aggregation, respectively. P1 is a target of protective immunity. Its N-terminal region has been associated with adhesion and aggregation functions and contains epitopes recognized by efficacious antibodies. In this study, we used Bacillus subtilis, a gram-positive expression host, to produce a recombinant N-terminal polypeptide of P1 (P1(39-512)) derived from the S. mutans strain UA159. Purified P1(39-512) reacted with an anti-full-length P1 antiserum as well as one raised against intact S. mutans cells, indicating preserved antigenicity. Immunization of mice with soluble and heat-denatured P1(39-512) induced antibodies that reacted specifically with native P1 on the surface of S. mutans cells. The anti-P1(39-512) antiserum was as effective at blocking saliva-mediated aggregation of S. mutans cells and better at blocking bacterial adhesion to saliva-coated plastic surfaces compared with the anti-full-length P1 antiserum. In addition, adsorption of the anti-P1 antiserum with P1(39-512) eliminated its ability to block the adhesion of S. mutans cells to abiotic surfaces. The present results indicate that P1(39-512), expressed and purified from a recombinant B. subtilis strain, maintains important immunological features of the native protein and represents an additional tool for the development of anticaries vaccines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clearing blood-stage malaria parasites without inducing major host pathology requires a finely tuned balance between pro- and anti-inflammatory responses. The interplay between regulatory T (Treg) cells and dendritic cells (DCs) is one of the key determinants of this balance. Although experimental models have revealed various patterns of Treg cell expansion, DC maturation, and cytokine production according to the infecting malaria parasite species, no studies have compared all of these parameters in human infections with Plasmodium falciparum and P. vivax in the same setting of endemicity. Here we show that during uncomplicated acute malaria, both species induced a significant expansion of CD4(+) CD25(+) Foxp3(+) Treg cells expressing the key immunomodulatory molecule CTLA-4 and a significant increase in the proportion of DCs that were plasmacytoid (CD123(+)), with a decrease in the myeloid/plasmacytoid DC ratio. These changes were proportional to parasite loads but correlated neither with the intensity of clinical symptoms nor with circulating cytokine levels. One-third of P. vivax-infected patients, but no P. falciparum-infected subjects, showed impaired maturation of circulating DCs, with low surface expression of CD86. Although vivax malaria patients overall had a less inflammatory cytokine response, with a higher interleukin-10 (IL-10)/tumor necrosis factor alpha (TNF-alpha) ratio, this finding did not translate to milder clinical manifestations than those of falciparum malaria patients. We discuss the potential implications of these findings for species-specific pathogenesis and longlasting protective immunity to malaria.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Merozoite surface proteins (MSPs) of the malaria parasites are major candidates for vaccine development targeting asexual blood stages. However, the diverse antigenic repertoire of these antigens that induce strain-specific protective immunity in human is a major challenge for vaccine design and often determines the efficacy of a vaccine. Here we further assessed the genetic diversity of Plasmodium vivax MSP4 (PvMSP4) protein using 195 parasite samples collected mostly from Thailand, Indonesia and Brazil. Overall, PvMSP4 is highly conserved with only eight amino acid substitutions. The majority of the haplotype diversity was restricted to the two short tetrapeptide repeat arrays in exon 1 and 2, respectively. Selection and neutrality tests indicated that exon 1 and the entire coding region of PvMSP4 were under purifying selection. Despite the limited nucleotide polymorphism of PvMSP4, significant genetic differentiation among the three major parasite populations was detected. Moreover, microgeographical heterogeneity was also evident in the parasite populations from different endemic areas of Thailand. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rough mutants of Brucella abortus were generated by disruption of wbkC gene which encodes the formyltransferase enzyme involved in LPS biosynthesis. In bone marrow-derived macrophages the B. abortus Delta wbkC mutants were attenuated, could not reach a replicative niche and induced higher levels of IL-12 and TNF-alpha when compared to parental smooth strains. Additionally, mutants exhibited attenuation in vivo in C57BL/6 and interferon regulatory factor-1 knockout mice. Delta wbkC mutant strains induced lower protective immunity in C56BL/6 than smooth vaccine S19 but similar to rough vaccine RB51. Finally, we demonstrated that Brucella wbkC is critical for LPS biosynthesis and full bacterial virulence. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Schistosomiasis affects more than 200 million people worldwide; another 600 million are at risk of infection. The schistosomulum stage is believed to be the target of protective immunity in the attenuated cercaria vaccine model. In an attempt to identify genes up-regulated in the schistosomulum stage in relation to cercaria, we explored the Schistosoma mansoni transcriptome by looking at the relative frequency of reads in EST libraries from both stages. The 400 genes potentially up-regulated in schistosomula were analyzed as to their Gene Ontology categorization, and we have focused on those encoding-predicted proteins with no similarity to proteins of other organisms, assuming they could be parasite-specific proteins important for survival in the host. Up-regulation in schistosomulum relative to cercaria was validated with real-time reverse transcription polymerase chain reaction (RT-PCR) for five out of nine selected genes (56%). We tested their protective potential in mice through immunization with DNA vaccines followed by a parasite challenge. Worm burden reductions of 16-17% were observed for one of them, indicating its protective potential. Our results demonstrate the value and caveats of using stage-associated frequency of ESTs as an indication of differential expression coupled to DNA vaccine screening in the identification of novel proteins to be further investigated as potential vaccine candidates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell immunity has been claimed as the main immunoprotective mechanism against Paracoccidioides brasiliensis infection, the most important fungal infection in Latin America. As the initial events that control T-cell activation in paracoccidioidomycosis (PCM) are not well established, we decided to investigate the role of CD28, an important costimulatory molecule for the activation of effector and regulatory T cells, in the immunity against this pulmonary pathogen. Using CD28-deficient (CD28(-/-)) and normal wild-type (WT) C57BL/6 mice, we were able to demonstrate that CD28 costimulation determines in pulmonary paracoccidioidomycosis an early immunoprotection but a late deleterious effect associated with impaired immunity and uncontrolled fungal growth. Up to week 10 postinfection, CD28(-/-) mice presented increased pulmonary and hepatic fungal loads allied with diminished production of antibodies and pro-and anti-inflammatory cytokines besides impaired activation and migration of effector and regulatory T (Treg) cells to the lungs. Unexpectedly, CD28-sufficient mice progressively lost the control of fungal growth, resulting in an increased mortality associated with persistent presence of Treg cells, deactivation of inflammatory macrophages and T cells, prevalent presence of anti-inflammatory cytokines, elevated fungal burdens, and extensive hepatic lesions. As a whole, our findings suggest that CD28 is required for the early protective T-cell responses to P. brasiliensis infection, but it also induces the expansion of regulatory circuits that lately impair adaptive immunity, allowing uncontrolled fungal growth and overwhelming infection, which leads to precocious mortality of mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innate immunity is based in pre-existing elements of the immune system that directly interact with all types of microbes leading to their destruction or growth inhibition. Several elements of this early defense mechanism act in concert to control initial pathogen growth and have profound effect on the adaptative immune response that further develops. Although most studies in paracoccidioidomycosis have been dedicated to understand cellular and humoral immune responses, innate immunity remains poorly defined. Hence, the main purpose of this review is to present and discuss some mechanisms of innate immunity developed by resistant and susceptible mice to Paracoccidioides brasiliensis infection, trying to understand how this initial host-pathogen interface interferes with the protective or deleterious adaptative immune response that will dictate disease outcome. An analysis of some mechanisms and mediators of innate immunity such as the activation of complement proteins, the microbicidal activity of natural killer cells and phagocytes, the production of inflammatory eicosanoids, cytokines, and chemokines among others, is presented trying to show the important role played by innate immunity in the host response to P. brasiliensis infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invertebrates protect themselves against microbial infection through cellular and humoral immune defenses. Since the available information on the immune system of spiders is scarce, the main goat of the present study was to investigate the role of hemocytes and antimicrobial peptides (AMPs) in defense against microbes of spider Acanthoscurria gomesiana. We previously described the purification and characterization of two AMPs from the hemocytes of naive spider A. gomesiana, gomesin and acanthoscurrin. Here we show that 57% of the hemocytes store both gomesin and acanthoscurrin, either in the same or in different granules. Progomesin labeling in hemocyte granules indicates that gomesin is addressed to those organelles as a propeptide. In vivo and in vitro experiments showed that lipopolysaccharide (LPS) and yeast caused the hemocytes to migrate. Once they have reached the infection site, hemocytes may secrete coagulation cascade components and AMPs to cell-free hemolymph. Furthermore, our results suggest that phagocytosis is not the major defense mechanism activated after microbial challenge. Therefore, the main reactions involved in the spider immune defense might be coagulation and AMP secretion. (C) 2007 Elsevier Ltd. All rights reserved.