422 resultados para prostaglandin endoperoxide synthase 2

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the production of prostaglandin E(2) (PGE(2)) and up-regulation in cyclooxygenase (COX) pathway induced by a phospholipase A(2) (PLA(2)), myotoxin-III (MT-III), purified from Bothrops asper snake venom, in isolated neutrophils were investigated. The arachidonic acid (AA) production and the participation of intracellular PLA(2)s (cytosolic PLA(2) and Ca(2+)-independent PLA(2)) in these events were also evaluated. MT-III induced COX-2, but not COX-1 gene and protein expression in neutrophils and increased PGE(2) levels. Pretreatment of neutrophils with COX-2 and COX-1 inhibitors reduced PGE(2) production induced by MT-III. Arachidonyl trifluoromethyl ketone (AACOCF(3)), an intracellular PLA(2) inhibitor, but not bromoenol lactone (BEL), an iPLA(2) inhibitor, suppressed the MT-III-induced AA and PGE(2) release. In conclusion, MT-III directly stimulates neutrophils inducing COX-2 mRNA and protein expression followed by production of PGE(2). COX-2 isoform is preeminent over COX-1 for production of PGE(2) stimulated by MT-III. PGE(2) and AA release by MT-III probably is related to cPLA(2) activation. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of septic shock is a common and frequently lethal consequence of gram-negative infection. Mediators released by lung macrophages activated by bacterial products such as lipopolysaccharide (LPS) contribute to shock symptoms. We have shown that insulin downregulates LPS-induced TNF production by alveolar macrophages (AMs). In the present study, we investigated the effect of insulin on the LPS-induced production of nitric oxide (NO) and prostaglandin (PG)-E(2), on the expression of inducible nitric oxide synthase ( iNOS) and cyclooxygenase (COX)-2, and on nuclear factor kappa B (NF-kappa B) activation in AMs. Resident AMs from male Wistar rats were stimulated with LPS (100 ng/mL) for 30 minutes. Insulin (1 mU/mL) was added 10 min before LPS. Enzymes expression, NF-kappa B p65 activation and inhibitor of kappa B (I-kappa B) a phosphorylation were assessed by immunobloting; NO by Griess reaction and PGE(2) by enzyme immunoassay (EIA). LPS induced in AMs the expression of iNOS and COX-2 proteins and production of NO and PGE(2), and, in parallel, NF-kappa B p65 activation and cytoplasmic I-kappa B alpha phosphorylation. Administration of insulin before LPS suppressed the expression of iNOS and COX-2, of NO and PGE(2) production and Nuclear NF-kappa B p65 activation. Insulin also prevented cytoplasmic I-kappa Ba phosphorylation. These results show that in AMs stimulated by LPS, insulin prevents nuclear translocation of NF-kappa B, possibly by blocking I-kappa Ba degradation, and supresses the production of NO and PGE(2), two molecules that contribute to septic shock. Copyright (C) 2008 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was conducted to determine the affect of pre-treating of oocytes and/or sperm with a rabbit polyclonal antibody against recombinant cattle lipocalin type prostaglandin D synthase (alpha L-PGDS) on in vitro sperm-oocyte binding and fertilization. In vitro matured cattle oocytes were incubated (39 degrees C, 5% CO2 in air) for I It in the following treatments either 500 mu L of fertilization medium (FM) or FM with alpha L-PGDS (1:2000). Frozen-thawed spermatozoa were washed by a 45/90% layered Percoll gradient centrifugation and incubated for I h either FM or FM with a L-PGDS. This study utilized five different treatments: (1) no antibody (control); (2) a rabbit IgG against a non-bovine antigen, bacterial histidase (alpha-hist); (3) a L-PGDS at fertilization time (with fertilization medium); (4) alpha L-PGDS-treated oocytes; or (5) a L-PGDS-treated sperm. Pre-treated oocytes were incubated with 10 X 10(4) washed spermatozoa per 25 oocytes. Oocytes used to assess sperm binding were stained with Hoescht 33342, and the number of sperm bound per zonae pellucidae counted. The remaining oocytes were fixed in acid alcohol, stained with 1% acetate-orcein and observed to determine the presence of pronuclei. More sperm bound to the zonae pellucidae when oocytes and/or sperm were pre-treated with alpha. L-PGDS: (1) 26.4 +/- 3.0; (2) 25.6 +/- 3.0; (3) 59.7 +/- 3.0; (4) 56.4 +/- 3.0; and (5) 57.1 +/- 3.0. Addition of alpha L-PGDS with sperm, oocytes, or both, decreased fertilization (P < 0.05) compared with the control: (1) 89.2 +/- 2.0%; (2) 87.5 +/- 2.0%; (3) 19.4 +/- 2.0%; (4) 27.2 +/- 3.1%; and (5) 14.1 +/- 3.4%. The alpha L-PGDS reacts with both oocytes and spermatozoa, resulting in increases of in vitro sperm-oocyte binding and inhibition of fertilization. These observations suggest that L-PGDS may have a role in cattle fertilization. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Glycogen storage disease type 0 is an autosomal recessive disease presenting in infancy or early childhood and characterized by ketotic hypoglycemia after prolonged fasting and postprandial hyperglycemia and hyperlactatemia. Sixteen different mutations have been identified to date in the gene which encodes hepatic glycogen synthase, resulting in reduction of glycogen storage in the liver. Case Presentation: Biochemical evaluation as well as direct sequencing of exons and exon-intron boundary regions of the GYS2 gene were performed in a patient presenting fasting hypoglycemia and postprandial hyperglycemia and her parents. The patient was found to be compound heterozygous for one previously reported nonsense mutation (c. 736 C>T; R243X) and a novel frameshift mutation (966_967delGA/insC) which introduces a stop codon 21 aminoacids downstream from the site of the mutation that presumably leads to loss of 51% of the COOH-terminal part of the protein. The glycemia and lactatemia of the parents after an oral glucose tolerance test were evaluated to investigate a possible impact of the carrier status on the metabolic profile. The mother, who presented a positive family history of type 2 diabetes, was classified as glucose intolerant and the father, who did not exhibit metabolic changes after the glucose overload, had an antecedent history of hypoglycemia after moderate alcohol ingestion. Conclusion: The current results expand the spectrum of known mutations in GYS2 and suggest that haploinsufficiency could explain metabolic abnormalities in heterozygous carriers in presence of predisposing conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work explored the role of inhibition of cyclooxygenases (COXs) in modulating the inflammatory response triggered by acute kidney injury. C57Bl/6 mice were used. Animals were treated or not with indomethacin (IMT) prior to injury (days -1 and 0). Animals were subjected to 45 min of renal pedicle occlusion and sacrificed at 24 h after reperfusion. Serum creatinine and blood urea nitrogen, reactive oxygen species (ROS), kidney myeloperoxidase (MPO) activity, and prostaglandin E2 (PGE(2)) levels were analyzed. Tumor necrosis factor (TNF)-alpha, t-bet, interleukin (IL)-10, IL-1 beta, heme oxygenase (HO)-1, and prostaglandin E synthase (PGES) messenger RNA (mRNA) were studied. Cytokines were quantified in serum. IMT-treated animals presented better renal function with less acute tubular necrosis and reduced ROS and MPO production. Moreover, the treatment was associated with lower expression of TNF-alpha, PGE(2), PGES, and t-bet and upregulation of HO-1 and IL-10. This profile was mirrored in serum, where inhibition of COXs significantly decreased interferon (IFN)-gamma, TNF-alpha, and IL-12 p70 and upregulated IL-10. COXs seem to play an important role in renal ischemia and reperfusion injury, involving the secretion of pro-inflammatory cytokines, activation of neutrophils, and ROS production. Inhibition of COX pathway is intrinsically involved with cytoprotection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chagas disease, caused by infection with Trypanosoma cruzi, is an important cause of cardiovascular disease. It is increasingly clear that parasite-derived prostaglandins potently modulate host response and disease progression. Here, we report that treatment of experimental T. cruzi infection (Brazil strain) beginning 5 days post infection (dpi) with aspirin (ASA) increased mortality (2-fold) and parasitemia (12-fold). However, there were no differences regarding histopathology or cardiac structure or function. Delayed treatment with ASA (20 mg/kg) beginning 60 dpi did not increase parasitemia or mortality but improved ejection fraction. ASA treatment diminished the profile of parasite-and host-derived circulating prostaglandins in infected mice. To distinguish the effects of ASA on the parasite and host bio-synthetic pathways we infected cyclooxygenase-1 (COX-1) null mice with the Brazil-strain of T. cruzi. Infected COX-1 null mice displayed a reduction in circulating levels of thromboxane (TX)A(2) and prostaglandin (PG)F(2 alpha). Parasitemia was increased in COX-1 null mice compared with parasitemia and mortality in ASA-treated infected mice indicating the effects of ASA on mortality potentially had little to do with inhibition of prostaglandin metabolism. Expression of SOCS-2 was enhanced, and TRAF6 and TNF alpha reduced, in the spleens of infected ASA-treated mice. Ablation of the initial innate response to infection may cause the increased mortality in ASA-treated mice as the host likely succumbs more quickly without the initiation of the ""cytokine storm'' during acute infection. We conclude that ASA, through both COX inhibition and other ""off-target'' effects, modulates the progression of acute and chronic Chagas disease. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to and maintenance of the chronic phase of the disease. A deeper understanding of the mechanism of ASA action may provide clues to the differences between host response in the acute and chronic T. cruzi infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipocalins are beta-barrel proteins, which share three conserved motifs in their amino acid sequence. In this study, we identified by a peptide mapping approach, a seven-amino acid sequence related to one of these motifs (motif 2) that modulates cell survival. A synthetic peptide based on an insect lipocalin displayed cytoprotective activity in serum-deprived endothelial cells and leucocytes. This activity was dependent on nitric oxide synthase. This sequence was found within several lipocalins, including apolipoprotein D, retinol binding protein, lipocalin-type prostaglandin D synthase, and many unknown proteins, suggesting that it is a sequence signature and a lipocalin conserved property. (C) 2010 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substance P (SP) is a neuropeptide that can modulate inflammatory mediator release through activation of NK(1) receptors (NK(1)R). Some studies have also suggested the involvement of SP in lipopolysaccharide (LPS)-induced fever. However, the precise contribution of this neuropeptide to the pathways activated during fever is unknown. In this study we investigated the effect of a selective NK(1)R antagonist, SR140333B, on the febrile response induced by LPS and cytokines. Our results show that the systemic injection of SR140333B did not modify the fever induced by LPS at a dose that is able to reduce protein extravasation induced by SP in the skin. On the other hand, intracerebroventricular administration of 5R140333B significantly reduced the fever induced by peripheral injection of LPS. These data emphasize an important role for SP in the central nervous system during the febrile response to LPS, and are reinforced by the fact that intracerebroventricular injection of SP also induced fever in a dose-dependent manner in captopril-treated rats. Considering that the febrile response can result from the generation of several endogenous pyrogens, among them interleukin (IL)-1 beta and macrophage inflammatory protein-1 alpha (CCL3/MIP-1 alpha), we also examined the effect of SR140333B on the fever induced by these cytokines which act through prostaglandin-dependent and independent mechanisms, respectively. Surprisingly, SR140333B did not modify the febrile response to IL-1 beta or CCL3/MIP-1 alpha. Altogether these data suggest that the central action of SP is essential for LPS-, but not for IL-1 beta- or CCL3/MIP-1 alpha-induced fever. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Singlet molecular oxygen O(2)((1)Delta(g)) is a potent oxidant that can react with different biomolecules, including DNA, lipids and proteins. Many polycyclic aromatic hydrocarbons have been studied as O(2)((1)Delta(g)) chemical traps. Nevertheless, a suitable modification in the polycyclic aromatic ring must be made to increase the yield of O(2)((1)Delta(g)) chemical trapping. With this goal, an anthracene derivative, diethyl-3,3 '-(9,10-anthracenediyl)bisacrylate (DADB), was obtained from the reaction of 9,10-dibromoanthracene and ethyl acrylate through the Heck coupling reaction. The coupling of ethyl acrylate with the anthracene ring produced a new lipophilic, esterified, fluorescent probe reactive toward O(2)((1)Delta(g)). This compound reacts with O(2)((1)Delta(g)) at a rate of k(r) = 1.69 x 10(6) M(-1) s(-1) forming a stable endoperoxide (DADBO(2)), which was characterized by UV-Vis, fluorescence, HPLC/MS and (1)H and (13)C NMR techniques. The photophysical, photochemical and thermostability features of DADB were also evaluated. Furthermore, this compound has the potential for great application in biological systems because it is easily synthetized in large amount and generates specific endoperoxide (DADBO(2)), which can be easily detected by HPLC tandem mass spectrometry (HPLC/MS/MS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we aimed at evaluating the effect of the major polar constituents of the medicinal plant Lychnophora ericoides on the production of inflammatory mediators produced by LPS-stimulated U-937 cells. The 6,8-di-C-beta-glucosylapigenin (vicenin-2) presented no effect on tumor necrosis factor (TNF)-alpha production, but inhibited, in a dose-dependent manner, the production of prostaglandin (PG) E(2) without altering the expression of cyclooxygenase (COX) -2 protein. 3,5-Dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid, at lower concentrations, had small but significant effects on reducing PG E, levels; at higher doses these compounds stimulated PGE(2) and also TNF-alpha production by the cells. All the caffeoylquinic acid derivatives, in a dose-dependent fashion, were able to inhibit monocyte chemoattractant protein-3 synthesis/release, with 4,5-DCQ being the most potent at the highest tested concentration. These results add important information on the effects of plant natural polyphenols, namely vicenin-2 and caffeoylquinic acid derivatives, on the production of inflammatory mediators by cultured cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effective innate immune recognition of the intracellular protozoan parasite Trypanosoma cruzi is critical for host resistance against Chagas disease, a severe and chronic illness that affects millions of people in Latin America. In this study, we evaluated the participation of nucleotide-binding oligomerization domain (Nod)like receptor proteins in host response to T cruzi infection and found that Nod1-dependent, but not Nod2-dependent, responses are required for host resistance against infection. Bone marrow-derived macrophages from Nod1(-/-) mice showed an impaired induction of NF-kappa B-dependent products in response to infection and failed to restrict T cruzi infection in presence of IFN-gamma. Despite normal cytokine production in the sera, Nod1(-/-) mice were highly susceptible to T cruzi infection, in a similar manner to MyD88(-/-) and NO synthase 2(-/-) mice. These studies indicate that Nod1-dependent responses account for host resistance against T cruzi infection by mechanisms independent of cytokine production. The Journal of Immunology, 2010, 184: 1148-1152.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have demonstrated that oviductal fluid (ODF) proteins associate with eggs of numerous species including the bovine. In this study, the association of three ODF proteins, the bovine oestrus-associated protein, osteopontin (OPN), lipocalin-type prostaglandin D synthase (L-PGDS), with the bovine zona pellucida (ZP) was demonstrated by immunohistochemistry and western blot. The biological function of ODF derived egg-associated OPN and L-PGDS in sperm binding, fertilization and embryonic development was also explored. In vitro matured bovine oocytes were pre-incubated with ODF collected by cannula from cows in oestrus, or ODF with antibodies to OPN, L-PGDS and bovine serum albumin (BSA). Following incubation, oocytes were inseminated with 1 x 10(5) frozen-thawed spermatozoa, and they were evaluated for sperm binding, fertilization and embryonic development in vitro. Pre-treatment of ODF with antibodies to all of proteins reduced sperm binding to the ZP and fertilization in vitro. Cleavage rates were not significantly different among incubations, but rates of embryo development were significantly decreased. We conclude that antibodies to OPN, L-PGDS and BSA react with oocytes incubated with ODF and inhibit sperm binding, fertilization and embryonic development in vitro, suggesting a potential role of these proteins in these events.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is an endogenous ligand of peroxisome proliferator-activated receptors gamma (PPAR-gamma) and is now recognized as a potent anti-inflammatory mediator. However, information regarding the influence of 15d-PGJ(2) on inflammatory pain is still unknown. In this study, we evaluated the effect of 15d-PGJ(2) upon inflammatory hypernociception and the mechanisms involved in this effect. We observed that intraplantar administration of 15d-PGJ(2) (30-300 ng/paw) inhibits the mechanical hypernociception induced by both carrageenan (100 mu g/paw) and the directly acting hypernociceptive mediator, prostaglandin E-2 (PGE(2)). Moreover, 15d-PGJ(2) [100 ng/temporomandibular joint (TMJ)] inhibits formalininduced TMJ hypernociception. On the other hand, the direct administration of 15d-PGJ(2) into the dorsal root ganglion was ineffective in blocking PGE(2)- induced hypernociception. In addition, the 15d-PGJ(2) antinociceptive effect was enhanced by the increase of macrophage population in paw tissue due to local injection of thioglycollate, suggesting the involvement of these cells on the 15d-PGJ(2)-antinociceptive effect. Moreover, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone and by the PPAR-gamma antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662), suggesting the involvement of peripheral opioids and PPAR-gamma receptor in the process. Similar to opioids, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide/cGMP/protein kinase G (PKG)/K-ATP(+) channel pathway because it was prevented by the pretreatment with the inhibitors of nitric-oxide synthase (N-G-monomethyl-L-arginine acetate), guanylate cyclase] 1H-(1,2,4)-oxadiazolo(4,2-alpha) quinoxalin-1- one[, PKG [indolo[2,3-a]pyrrolo[3,4-c]carbazole aglycone (KT5823)], or with the ATP-sensitive potassium channel blocker glibenclamide. Taken together, these results demonstrate for the first time that 15d-PGJ(2) inhibits inflammatory hypernociception via PPAR-gamma activation. This effect seems to be dependent on endogenous opioids and local macrophages.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Ligands for peroxisome proliferator-activated receptor gamma (PPAR-gamma), such as 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) have been implicated as a new class of anti-inflammatory compounds with possible clinical applications. Based on this concept, this investigation was designed to determine the effect of 15d-PGJ(2)-mediated activation of PPAR-gamma ligand on neutrophil migration after an inflammatory stimulus and clarify the underlying molecular mechanisms using a mouse model of peritonitis. Our results demonstrated that 15d-PGJ(2) administration decreases leukocyte rolling and adhesion to the inflammated mesenteric tissues by a mechanism dependent on NO. Specifically, pharmacological inhibitors of NO synthase remarkably abrogated the 15d-PGJ(2)-mediated suppression of neutrophil migration to the inflammatory site. Moreover, inducible NOS(-/-) mice were not susceptible to 15d-PGJ(2)-mediated suppression of neutrophil migration to the inflammatory sites when compared with their wild type. In addition, 15d-PGJ(2)-mediated suppression of neutrophil migration appeared to be independent of the production of cytokines and chemokines, since their production were not significantly affected in the carrageenan-injected peritoneal cavities. Finally, up-regulation of carrageenan-triggered ICAM-I expression in the mesenteric microcirculation vessels was abrogated by pretreatment of wild-type mice with 15d-PGJ(2), whereas 15d-PGJ(2) inhibited F-actin rearrangement process in neutrophils. Taken together these findings demonstrated that 15d-PGJ(2) suppresses inflammation-initiated neutrophil migration in a mechanism dependent on NO production in mesenteric tissues.