6 resultados para primordial awareness

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contents Previously, three distinct populations of putative primordial germ cells (PGCs), namely gonocytes, intermediate cells and pre-spermatogonia, have been described in the human foetal testis. According to our knowledge, these PGCs have not been studied in any other species. The aim of our study was to identify similar PGC populations in canine embryos. First, we develop a protocol for canine embryo isolation. Following our protocol, 15 canine embryos at 21-25 days of pregnancy were isolated by ovaryhysterectomy surgery. Our data indicate that dramatic changes occur in canine embryo development and PGCs specification between 21 to 25 days of gestation. At that moment, only two PGC populations with distinct morphology can be identified by histological analyses. Cell population 1 presented round nuclei with prominent nucleolus and a high nuclear to cytoplasm ratio, showing gonocyte morphology. Cell population 2 was often localized at the periphery of the testicular cords and presented typical features of PGC. Both germ cell populations were positively immunostained with anti-human OCT-4 antibody. However, at day 25, all cells of population 1 reacted positively with OCT-4, whereas in population 2, fewer cells were positive for this marker. These two PGCs populations present morphological features similar to gonocytes and intermediate cells from human foetal testis. It is expected that a population of pre-spermatogonia would be observed at later stages of canine foetus development. We also showed that anti-human OCT-4 antibody can be useful to identify canine PGC in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we extend previous work on the evolution of a primordial black hole (PBH) to address the presence of a dark energy component with a super-negative equation of state as a background, investigating the competition between the radiation accretion, the Hawking evaporation and the phantom accretion, the latter two causing a decrease on black hole mass. It is found that there is an instant during the matter-dominated era after which the radiation accretion becomes negligible compared to the phantom accretion. The Hawking evaporation may become important again depending on a mass threshold. The evaporation of PBHs is quite modified at late times by these effects, but only if the generalized second law of thermodynamics is violated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primordial Quark Nuggets, remnants of the quark-hadron phase transition, may be hiding most of the baryon number in superdense chunks have been discussed for years always from the theoretical point of view. While they seemed originally fragile at intermediate cosmological temperatures, it became increasingly clear that they may survive due to a variety of effects affecting their evaporation (surface and volume) rates. A search of these objects have never been attempted to elucidate their existence. We discuss in this note how to search directly for cosmological fossil nuggets among the small asteroids approaching Earth. `Asteroids` with a high visible-to-infrared flux ratio, constant lightcurves and devoid of spectral features are signals of an actual possible nugget nature. A viable search of very definite primordial quark nugget features can be conducted as a spinoff of the ongoing/forthcoming NEAs observation programmes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently predicted the existence of random primordial magnetic fields (RPMFs) in the form of randomly oriented cells with dipole-like structure with a cell size L(0) and an average magnetic field B(0). Here, we investigate models for primordial magnetic field with a similar web-like structure, and other geometries, differing perhaps in L(0) and B(0). The effect of RPMF on the formation of the first galaxies is investigated. The filtering mass, M(F), is the halo mass below which baryon accretion is severely depressed. We show that these RPMF could influence the formation of galaxies by altering the filtering mass and the baryon gas fraction of a halo, f(g). The effect is particularly strong in small galaxies. We find, for example, for a comoving B(0) = 0.1 mu G, and a reionization epoch that starts at z(s) = 11 and ends at z(e) = 8, for L(0) = 100 pc at z = 12, the f(g) becomes severely depressed for M < 10(7) M(circle dot), whereas for B(0) = 0 the f(g) becomes severely depressed only for much smaller masses, M < 10(5) M(circle dot). We suggest that the observation of M(F) and f(g) at high redshifts can give information on the intensity and structure of primordial magnetic fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the evolution of a primordial black hole (PBH) taking into account the presence of dark energy modeled by a general perfect fluid. In the specific case of a stationary non-self-gravitating test fluid, the competition between radiation accretion, Hawking evaporation and the accretion of such a fluid has been studied in detail. The evaporation of PBHs is quite modified at late times by these effects. We address further generalizations of this scenario to consider other types of fluids, and point out early developments of a nonstationary accretion model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the impact of the existence of a primordial magnetic field on the filter mass, characterizing the minimum baryonic mass that can form in dark matter (DM) haloes. For masses below the filter mass, the baryon content of DM haloes are severely depressed. The filter mass is the mass when the baryon to DM mass ratio in a halo is equal to half the baryon to DM ratio of the Universe. The filter mass has previously been used in semi-analytic calculations of galaxy formation, without taking into account the possible existence of a primordial magnetic field. We examine here its effect on the filter mass. For homogeneous comoving primordial magnetic fields of B(0) similar to 1 or 2 nG and a re-ionization epoch that starts at a redshift z(s) = 11 and is completed at z(r) = 8, the filter mass is increased at redshift 8, for example, by factors of 4.1 and 19.8, respectively. The dependence of the filter mass on the parameters describing the re-ionization epoch is investigated. Our results are particularly important for the formation of low-mass galaxies in the presence of a homogeneous primordial magnetic field. For example, for B(0) similar to 1 nG and a re-ionization epoch of z(s) similar to 11 and z(r) similar to 7, our results indicate that galaxies of total mass M similar to 5 x 108 M(circle dot) need to form at redshifts z(F) greater than or similar to 2.0, and galaxies of total mass M similar to 108 M(circle dot) at redshifts z(F) greater than or similar to 7.7.