151 resultados para pressure overload hypertrophy
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Cardiomyocyte hypertrophy occurs in response to a variety of physiological and pathological stimuli. While pathological hypertrophy in heart failure is usually coupled with depressed contractile function, physiological hypertrophy associates with increased contractility. In the present study, we explored whether 8 weeks of moderate intensity exercise training would lead to a cardiac anti-remodelling effect in an experimental model of heart failure associated with a deactivation of a pathological (calcineurin/NFAT, CaMKII/HDAC) or activation of a physiological (Akt-mTOR) hypertrophy signalling pathway. The cardiac dysfunction, exercise intolerance, left ventricle dilatation, increased heart weight and cardiomyocyte hypertrophy from mice lacking alpha(2A) and alpha(2C) adrenoceptors (alpha(2A)/alpha(2C)ARKO mice) were associated with sympathetic hyperactivity induced heart failure. The relative contribution of Ca(2+)-calmodulin high-affinity (calcineurin/NFAT) and low-affinity (CaMKII/HDAC) targets to pathological hypertrophy of alpha(2A)/alpha(2C)ARKO mice was verified. While nuclear calcineurin B, NFATc3 and GATA-4 translocation were significantly increased in alpha(2A)/alpha(2C)ARKO mice, no changes were observed in CaMKII/HDAC activation. As expected, cyclosporine treatment decreased nuclear translocation of calcineurin/NFAT in alpha(2A)/alpha(2C)ARKO mice, which was associated with improved ventricular function and a pronounced anti-remodelling effect. The Akt/mTOR signalling pathway was not activated in alpha(2A)/alpha(2C)ARKO mice. Exercise training improved cardiac function and exercise capacity in alpha(2A)/alpha(2C)ARKO mice and decreased heart weight and cardiomyocyte width paralleled by diminished nuclear NFATc3 and GATA-4 translocation as well as GATA-4 expression levels. When combined, these findings support the notion that deactivation of calcineurin/NFAT pathway-induced pathological hypertrophy is a preferential mechanism by which exercise training leads to the cardiac anti-remodelling effect in heart failure.
Resumo:
Background: Enhanced cardiac matrix metalloproteinase activity (MMPs) has been associated with ventricular remodeling and cardiac dysfunction. It is unknown whether MMPs contribute to systolic/diastolic dysfunction and compensatory remodeling in 2-kidney, 1-clip (2K1C) hypertensive rats. To test this hypothesis, we used 2K1C rats after 2 weeks of surgery treated or not with a nonspecific inhibitor of MMPs (doxycycline). Methods and Results: We found that blood pressure and +/-dP/dt increased in 2K1C rats compared with sham groups, and these parameters were attenuated by doxycycline treatment (P < .05). Doxycycline also reversed cardiac hypertrophy observed in 2K1C rats (P < .05). Hypertensive rats showed increased MMP-2 levels in zymograms and in the tissue by immunofluorescence (P < .05) compared with sham groups. Increased total gelatinolytic activity was observed in untreated 2K1C rats when compared with sham groups (P < .05). Doxycycline decreased total gelatinolytic activity in 2K1C rats to control levels (P < .05). Conclusion: An imbalance in gelatinolytic activity, with increased MMP-2 levels and activity underlies the development of morphological and functional alterations found in the compensatory hypertrophy observed in 2K1C hearts. Because function and structure were restored by doxycycline, the inhibition of MMPs or their modulation may provide beneficial effects for therapeutic intervention in cardiac hypertrophy. (J Cardiac Fail 2010;16:599-608)
Resumo:
Although most of effects of Angiotensin II (Ang II) related to cardiac remodelling can be attributed to type 1 Ang II receptor (AT(1)R), the type 2 receptor (AT(2)R) has been shown to be involved in the development of some cardiac hypertrophy models. In the present study, we investigated whether the thyroid hormone (TH) action leading to cardiac hypertrophy is also mediated by increased Ang II levels or by change on AT(1)R and AT(2)R expression, which could contribute to this effect. In addition, we also evaluated the possible contribution of AT(2)R in the activation of Akt and in the development of TH-induced cardiac hypertrophy. To address these questions, Wistar rats were treated with thyroxine (T(4), 0.1 mg/kg BW/day, i.p.), with or without AT(2)R blocker (PD123319), for 14 days. Cardiac hypertrophy was identified based on heart/body weight ratio and confirmed by analysis of atrial natriuretic factor mRNA expression. Cardiomyocyte cultures were used to exclude the influence of TH-related hemodynamic effects. Our results demonstrate that the cardiac Ang II levels were significantly increased (80%, P < 0.001) as well as the AT(2)R expression (50%, P < 0.05) in TH-induced cardiac hypertrophy. The critical involvement of AT(2)R to the development of this cardiac hypertrophy in vivo was evidenced after administration of AT(2) blocker, which was able to prevent in 40% (P < 0.01) the cardiac mass gain and the Akt activation induced by TH. The role of AT(2)R to the TH-induced cardiomyocyte hypertrophy was also confirmed after using PD123319 in the in vitro studies. These findings improve understanding of the cardiac hypertrophy observed in hyperthyroidism and provide new insights into the generation of future therapeutic strategies.
Resumo:
Several studies have implicated the renin angiotensin system in the cardiac hypertrophy induced by thyroid hormone. However, whether Angiotensin type 1 receptor (AT(1)R) is critically required to the development of T(3)-induced cardiomyocyte hypertrophy as well as whether the intracellular mechanisms that are triggered by AT(1)R are able to contribute to this hypertrophy model is unknown. To address these questions, we employed a selective small interfering RNA (siRNA, 50 nM) or an AT(1)R blocker (Losartan, 1 mu M) to evaluate the specific role of this receptor in primary cultures of neonatal cardiomyocytes submitted to T(3) (10 nM) treatment. The cardiomyocytes transfected with the AT(1)R siRNA presented reduced mRNA (90%, P < 0.001) and protein (70%, P < 0.001) expression of AT(1)R. The AT(1)R silencing and the AT(1)R blockade totally prevented the T(3)-induced cardiomyocyte hypertrophy, as evidenced by lower mRNA expression of atrial natriuretic factor (66%, P < 0.01) and skeletal alpha-actin (170%, P < 0.01) as well as by reduction in protein synthesis (85%, P < 0.001). The cardiomyocytes treated with T(3) demonstrated a rapid activation of Akt/GSK-3 beta/mTOR signaling pathway, which was completely inhibited by the use of PI3K inhibitors (LY294002, 10 mu M and Wortmannin, 200 nM). In addition, we demonstrated that the AT(1)R mediated the T(3)-induced activation of Akt/GSK-3 beta/mTOR signaling pathway, since the AT(1)R silencing and the AT(1)R blockade attenuated or totally prevented the activation of this signaling pathway. We also reported that local Angiotensin I/II (Ang I/II) levels (120%, P < 0.05) and the AT(1)R expression (180%, P < 0.05) were rapidly increased by T(3) treatment. These data demonstrate for the first time that the AT(1)R is a critical mediator to the T(3)-induced cardiomyocyte hypertrophy as well as to the activation of Akt/GSK-3 beta/mTOR signaling pathway. These results represent a new insight into the mechanism of T(3)-induced cardiomyocyte hypertrophy, indicating that the Ang I/II-AT(1)R-Akt/GSK-3 beta/mTOR pathway corresponds to a potential mediator of the trophic effect exerted by T(3) in cardiomyocytes.
Resumo:
P>1. Baroreceptors regulate moment-to-moment blood pressure (BP) variations, but their long-term effect on the cardiovascular system remains unclear. Baroreceptor deficit accompanying hypertension contributes to increased BP variability (BPV) and sympathetic activity, whereas exercise training has been associated with an improvement in these baroreflex-mediated changes. The aim of the present study was to evaluate the autonomic, haemodynamic and cardiac morphofunctional effects of long-term sinoaortic baroreceptor denervation (SAD) in trained and sedentary spontaneously hypertensive rats (SHR). 2. Rats were subjected to SAD or sham surgery and were then further divided into sedentary and trained groups. Exercise training was performed on a treadmill (five times per week, 50-70% maximal running speed). All groups were studied after 10 weeks. 3. Sinoaortic baroreceptor denervation in SHR had no effect on basal heart rate (HR) or BP, but did augment BPV, impairing the cardiac function associated with increased cardiac hypertrophy and collagen deposition. Exercise training reduced BP and HR, re-established baroreflex sensitivity and improved both HR variability and BPV. However, SAD in trained SHR blunted all these improvements. Moreover, the systolic and diastolic hypertensive dysfunction, reduced left ventricular chamber diameter and increased cardiac collagen deposition seen in SHR were improved after the training protocol. These benefits were attenuated in trained SAD SHR. 4. In conclusion, the present study has demonstrated that the arterial baroreflex mediates cardiac disturbances associated with hypertension and is crucial for the beneficial cardiovascular morphofunctional and autonomic adaptations induced by chronic exercise in hypertension.
Resumo:
Evidence of mild hypertension in women and female rats and our preliminary observation showing that training is not effective to reduce pressure in female as it does in male spontaneously hypertensive rats (SHR) prompt us to investigate the effects of gender on hemodynamic pattern and microcirculatory changes induced by exercise training. Female SHR and normotensive controls (Wistar- Kyoto rats) were submitted to training (55% VO2 peak; 3 months) or kept sedentary and instrumented for pressure and hindlimb flow measurements at rest and during exercise. Heart, kidney, and skeletal muscles (locomotor/ nonlocomotor) were processed for morphometric analysis of arterioles, capillaries, and venules. High pressure in female SHR was accompanied by an increased arteriolar wall: lumen ratio in the kidney (+30%; P < 0.01) but an unchanged ratio in the skeletal muscles and myocardium. Female SHR submitted to training did not exhibit further changes on the arteriolar wall: lumen ratio and pressure, showing additionally increased hindlimb resistance at rest (+29%; P < 0.05). On the other hand, female SHR submitted to training exhibited increased capillary and venular densities in locomotor muscles (+50% and 2.3- fold versus sedentary SHR, respectively) and normalized hindlimb flow during exercise hyperemia. Left ventricle pressure and weight were higher in SHR versus WKY rats, but heart performance (positive dP/dt(max) and negative dP/dt(max)) was not changed by hypertension or training, suggesting a compensated heart function in female SHR. In conclusion, the absence of training- induced structural changes on skeletal muscle and myocardium arterioles differed from changes observed previously in male SHR, suggesting a gender effect. This effect might contribute to the lack of pressure fall in trained female SHRs.
Resumo:
High salt intake is a known cardiovascular risk factor and is associated with cardiac alterations. To better understand this effect, male Wistar rats were fed a normal (NSD: 1.3% NaCl), high 4 (HSD4: 4%), or high 8 (HSD8: 8%) salt diet from weaning until 18 wk of age. The HSD8 group was subdivided into HSD8, HSD8+HZ (15 mg.kg(-1).d(-1) hydralazine in the drinking water), and HSD8+LOS (20 mg.kg(-1).d(-1) losartan in the drinking water) groups. The cardiomyocyte diameter was greater in the HSD4 and HSD8 groups than in the HSD8+LOS and NSD groups. Interstitial fibrosis was greater in the HSD4 and HSD8 groups than in the HSD8+HZ and NSD groups. Hydralazine prevented high blood pressure (BP) and fibrosis, but not cardiomyocyte hypertrophy. Losartan prevented high BP and cardiomyocyte hypertrophy, but not fibrosis. Angiotensin II type 1 receptor (AT(1)) protein expression in both ventricles was greater in the HSD8 group than in the NSD group. Losartan, but not hydralazine, prevented this effect. Compared with the NSD group, the binding of an AT(1) conformation-specific antibody that recognizes the activated form of the receptor was lower in both ventricles in all other groups. Losartan further lowered the binding of the anti-AT(1) antibody in both ventricles compared with all other experimental groups. Angiotensin II was greater in both ventricles in all groups compared with the NSD group. Myocardial structural alterations in response to HSD are independent of the effect on BP. Salt-induced cardiomyocyte hypertrophy and interstitial fibrosis possibly are due to different mechanisms. Evidence from the present study suggests that salt-induced AT(1) receptor internalization is probably due to angiotensin II binding. J. Nutr. 140: 1742-1751, 2010.
Resumo:
OBJECTIVE: The aim of this study was to evaluate the role of angiotensin I, II and 1-7 on left ventricular hypertrophy of Wistar and spontaneously hypertensive rats submitted to sinoaortic denervation. METHODS: Ten weeks after sinoaortic denervation, hemodynamic and morphofunctional parameters were analyzed, and the left ventricle was dissected for biochemical analyses. RESULTS: Hypertensive groups (controls and denervated) showed an increase on mean blood pressure compared with normotensive ones (controls and denervated). Blood pressure variability was higher in denervated groups than in their respective controls. Left ventricular mass and collagen content were increased in the normotensive denervated and in both spontaneously hypertensive groups compared with Wistar controls. Both hypertensive groups presented a higher concentration of angiotensin II than Wistar controls, whereas angiotensin 1-7 concentration was decreased in the hypertensive denervated group in relation to the Wistar groups. There was no difference in angiotensin I concentration among groups. CONCLUSION: Our results suggest that not only blood pressure variability and reduced baroreflex sensitivity but also elevated levels of angiotensin II and a reduced concentration of angiotensin 1-7 may contribute to the development of left ventricular hypertrophy. These data indicate that baroreflex dysfunction associated with changes in the renin angiotensin system may be predictive factors of left ventricular hypertrophy and cardiac failure.
Resumo:
Left ventricular hypertrophy (LVH) is a complication that may result from chronic hypertension. While nitric oxide (NO) deficiency has been associated with LVH, inconsistent results have been reported with regards to the association of endothelial NO synthase (eNOS) polymorphisms and LVH in hypertensive patients. This study aims to assess whether eNOS haplotypes are associated with LVH in hypertensive patients. This study included 101 healthy controls and 173 hypertensive patients submitted to echocardiography examination. Genotypes for three eNOS polymorphisms were determined: a single-nucleotide polymorphism in the promoter region (T-786C) and in exon 7 (Glu298Asp), and variable number of tandem repeats in intron 4. We found no significant association between eNOS genotypes and hypertension or with LVH (all p>0.05). However, while we found two eNOS haplotypes associated with variable risk of hypertension (all p<0.05), we found no significant associations between eNOS haplotypes and LVH (all p>0.05), even after adjustment in multiple linear regression analysis. These findings suggest that eNOS haplotypes that have been associated with variable susceptibility to hypertension were not associated with LVH in hypertensive patients. Further studies are necessary to examine whether other genes downstream may interact with eNOS polymorphisms and predispose to LVH in hypertensive patients.
Resumo:
Background. It is not known if the adjustment of antihypertensive therapy based on home blood pressure monitoring (HBPM) can improve blood pressure (BP) control among haemodialysis patients. Methods. This is an open randomized clinical trial. Hypertensive patients on haemodialysis were randomized to have the antihypertensive therapy adjusted based on predialysis BP measurements or HBPM. Before and after 6 months of follow-up, patients were submitted to ambulatory blood pressure monitoring (ABPM) for 24 h, HBPM during 1 week and echocardiogram. Results. A total of 34 and 31 patients completed the study in the HBPM and predialysis BP groups, respectively. At the end of study, the systolic (SBP) and diastolic (DBP) blood pressure during the interdialytic period measured by ABPM were significantly lower in the HBPM group in relation to the predialysis BP group (mean 24-h BP: 135 +/- 12 mmHg/76 +/- 7 mmHg versus 147 +/- 15 mmHg/79 +/- 8 mmHg; P < 0.05). In the HBPM analysis, the HBPM group showed a significant reduction only in SBP compared to the predialysis BP group (weekly mean: 144 +/- 21 mmHg versus 154 +/- 22 mmHg; P < 0.05). There were no differences between the HBPM and predialysis BP groups in relation to the left ventricular mass index at the end of the study (108 +/- 35 g/m(2) versus 110 +/- 33 g/m(2); P > 0.05). Conclusions. Decision making based on HBPM among haemodialysis patients has led to a better BP control during the interdialytic period in comparison with predialysis BP measurements. HBPM may be a useful adjuvant instrument for blood pressure control among haemodialysis patients.
Resumo:
Left ventricular hypertrophy is an important predictor of cardiovascular risk and sudden death. This study explored the ability of four obesity indexes (body mass index, waist circumference, waist-hip ratio and waist-stature ratio) to identify left ventricular hypertrophy. A sample of the general population (n=682; 43.5% men) was surveyed to assess cardiovascular risk factors. Biochemical, anthropometric and blood pressure values were obtained in a clinic visit according to standard methods. Left ventricular mass was obtained from transthoracic echocardiogram. Left ventricular hypertrophy was defined using population-specific cutoff values for left ventricular mass indexed to height(2.7). The waist-stature ratio showed the strongest positive association with left ventricular mass. This correlation was stronger in women, even after controlling for age and systolic blood pressure. By multivariate analysis, the main predictors of left ventricular hypertrophy were waist-stature ratio (23%), systolic blood pressure (9%) and age (2%) in men, and waist-stature ratio (40%), age (6%) and systolic blood pressure (2%) in women. Receiver-operating characteristic curves showed the optimal cutoff values of the different anthropometric indexes associated with left ventricular hypertrophy. The waist-stature ratio was a significantly better predictor than the other indexes (except for the waist-hip ratio), independent of gender. It is noteworthy that a waist-stature ratio cutoff of 0.56 showed the highest combined sensitivity and specificity to detect left ventricular hypertrophy. Abdominal obesity identified by waist-stature ratio instead of overall obesity identified by body mass index is the simplest and best obesity index for assessing the risk of left ventricular hypertrophy, is a better predictor in women and has an optimal cutoff ratio of 0.56. Hypertension Research (2010) 33, 83-87; doi: 10.1038/hr.2009.188; published online 13 November 2009
Resumo:
We investigated the impact of obesity on the abnormalities of systolic and diastolic regional left ventricular (LV) function in patients with or without hypertension or hypertrophy, and without heart failure. We studied 120 individuals divided into 6 groups of 20 patients (42 +/- 6 years, 60 females) using standard and pulsed-wave tissue Doppler imaging (TDI) echocardiography, and heterogeneity index (HI): nonobese (I: no hypertension, no hypertrophy, control group; II: hypertension, no hypertrophy; III: hypertension and hypertrophy) and obese (IV: no hypertension, no hypertrophy; V: hypertension, no hypertrophy; VI: hypertension and hypertrophy). The criterion for obesity was BMI >= 30 kg/m(2), for hypertension was blood pressure >= 140/90 mm Hg, for hypertrophy in nonobese was LV mass/body surface area (BSA) >134 g/m(2) (men) and >110 mg/m(2) (women), and in obese was LV mass/height((2.7)) >50 (men) and >40 (women). Obese groups had normal LV ejection fraction compared with nonobese groups, but decreased longitudinal and radial systolic myocardial peak velocities (S`), and early diastolic myocardial peak velocity (E`). Also, a great variability of E` and late diastolic myocardial peak velocity (A`) from the longitudinal basal region was observed in obese groups (E` basal nonobese: 11 +/- 7 vs. obese 19 +/- 11, P < 0.001, A` basal nonobese: 7 +/- 4 vs. obese 11 +/- 7, P < 0.001). Our findings were more evident when comparing groups IV with V and VI, with the latter having concentric hypertrophy and obvious segmental systolic and diastolic dysfunctions. Subclinical myocardial alterations and increased variability of the velocities were observed in obese groups, especially with hypertension and hypertrophy, reflecting impaired regional LV relaxation, segmental atrial, and systolic dysfunctions.
Resumo:
Background: Plantar fasciitis is the third most frequent injury in runners. Despite its high prevalence, its pathogenesis remains inconclusive. The literature reports overload as the basic mechanism for its development. However, the way that these plantar loads are distributed on the foot surface of runners with plantar fasciitis and the effects of pain on this mechanical factor has not yet been investigated. Therefore, the aim of this study was to evaluate and compare the plantar pressure distributions during running in runners with symptom or history of plantar fasciitis and runners without the disease. Methods: Forty-five recreational runners with plantar fasciitis (30 symptomatic and 15 with previous history of the disease) and 60 runners without plantar fasciitis (control group) were evaluated. Pain was assessed by a visual analogue scale. All runners were evaluated by means of the Pedar system insoles during running forty meters at a speed of 12(5%) km/h, using standard sport footwear. Two-way ANOVAS were employed to investigate the main and interaction effects between groups and plantar areas. Findings: No interaction effects were found for any of the investigated variables: peak pressure (P=0.61), contact area (P=0.38), contact time (P=0.91), and the pressure-time integral (P=0.50). Interpretation: These findings indicated that the patterns of plantar pressure distribution were not affected in recreational runners with plantar fasciitis when compared to control runners. Pain also did not interfere with the dynamic patterns of the plantar pressure distributions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Introduction. This study addressed the role of the local renin-angiotensin system (RAS) in the left ventriular hypertropy (LVH) induced by swimming training using pharmacological blockade. Materials and methods. Female Wistar rats treated with enalapril maleate (60 mg.kg(-1).d(-1), n = 38), losartan (20 mg.kg(-1).d(-1), n = 36) or high salt diet (1% NaCl, n = 38) were trained by two protocols (T1: 60-min swimming session, 5 days per week for 10 weeks and T2: the same T1 protocol until the 8(th) week, then 9(th) week they trained twice a day and 10(th) week they trained three times a day). Salt loading prevented activation of the systemic RAS. Haemodynamic parameters, soleus citrate synthase (SCS) activity and LVH (left ventricular/body weight ratio, mg/g) were evaluated. Results. Resting heart rate decreased in all trained groups. SCS activity increased 41% and 106% in T1 and T2 groups, respectively. LVH was 20% and 30% in T1 and T2 groups, respectively. Enalapril prevented 39% of the LVH in T2 group (p < 0.05). Losartan prevented 41% in T1 and 50% in T2 (P < 0.05) of the LVH in trained groups. Plasma renin activity (PRA) was inhibited in all salt groups and it was increased in T2 group. Conclusions. These data provide evidence that the physiological LVH induced by swimming training is regulated by local RAS independent from the systemic, because the hypertrophic response was maintained even when PRA was inhibited by chronic salt loading. However, other systems can contribute to this process.
Resumo:
Background: Matrix metalloproteinases (MMPs) are involved in cardiac remodeling and are encoded by genes showing genetic polymorphisms that have functional implications. We examined whether MMP-9 genetic polymorphisms are associated with hypertension and with left ventricular (LV) remodeling in hypertensive patients. Methods: We studied 173 hypertensive patients and 137 age, race and gender matched healthy controls. Heart echocardiography was performed in all patients and the following MMP-9 genetic polymorphisms were analyzed: C-(1562)T (rs3918242). -90 (CA)(14-24) (rs2234681) and Q279R (rs17576). Haplo.stats analysis was used to assess whether MMP-9 haplotypes are associated with hypertension. Linear regression analysis was performed to assess whether MMP-9 haplotypes affect LV mass index (LVMI) and other echocardiography parameters. Results: MMP-9 90 (CA)14-24 ""HH"" genotype (H allele defined by number of CA repeats >= 21) was associated with hypertension (P = 0.0085; OR = 2.321, 95% confidence interval = 1.250 to 4.309). While one MMP-9 haplotype (""C. H, Q"") protects against LVMI and end-diastolic diameter increases due to remodeling (P = 0.0490 and P = 0.0367), another MMP-9 haplotype apparently has detrimental effects over both parameters in hypertensive patients (""T, H. Q"", P = 0.0015 and P = 0.0057. respectively). Conclusion: Genetic polymorphisms in MMP-9 gene may modify the susceptibility of hypertensive patients to LV remodeling. Further studies are necessary to examine whether these polymorphisms affect clinical events in hypertensive patients. (C) 2010 Elsevier B.V. All rights reserved.