7 resultados para postural reflex
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Centrally injected histamine (HA) affects heart rate (HR), arterial blood pressure (BP), and sympathetic activity in rats. The posterodorsal medial amygdala (MePD) has high levels of histidine decarboxylase, connections with brain areas involved with the modulation of cardiovascular responses, and is relevant for the pathogenesis of hypertension. However, there is no report demonstrating the role of the MePD histaminergic activity on the cardiovascular function in awake rats. The alms of the present work were: 1) to study the effects of two doses (10-100 nM) of HA microinjected in the MePD on basal cardiovascular recordings and on baroreflex- and chemoreflex-mediated responses; 2) to reveal whether cardiovascular reflex responses could be affected by MePD microinjections of (R)-alpha-methylhistamine (AH(3)), an agonist of the inhibitory autoreceptor H(3); and, 3) to carry out a power spectral analysis to evaluate the contribution of the sympathetic and parasympathetic components in the variability of the HR and BP recordings. When compared with the control group (microinjected with saline, 0.3 mu l), HA (10 nM) promoted an increase in the MAP(50), i.e. the mean value of BP at half of the HR range evoked by the baroreflex response. Histamine (100 nM) did not affect the baroreflex activity, but significantly decreased the parasympathetic component of the HR variability, increased the sympathetic/parasympathetic balance at basal conditions (these two latter evaluated by the power spectral analysis), and promoted an impairment in the chemoreflex bradycardic response. Microinjection of AH(3) (10 mu M) led to mixed results, which resembled the effects of both doses of HA employed here. Present data suggest that cardiovascular changes induced by baroreceptors and chemoreceptors involve the histaminergic activity in the MePD. This neural regulation of reflex cardiovascular responses can have important implications for homeostatic and allostatic conditions and possibly for the behavioral displays modulated by the rat MePD. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Chicken (Gallus gallus) brains were used to investigate the typology and the immunolabel pattern for the subunits composing the AMPA-type glutamate receptors (GluR) of hindbrain neurons of the dorsal (dND) and ventral nuclei (vND) of the Deiter`s vestibular complex (CD), which is the avian correspondent of the lateral vestibular nucleus (LVN) of mammals. Our results revealed that neurons of both divisions were poor in GluR1. The vND, the GluR2/3+ and GluR4+ label presented no area or neuronal size preference, although most neurons were around 75%. The dND neurons expressing GluR2/3 are primarily around 85%, medium to large-sized 85%, and predominantly 60% located in the medial portion of the rostral pole and in the lateral portion of the caudal pole. The majority of dND neurons containing GluR4 are also around 75%, larger (70% are large and giant), exhibiting a distribution that seems to be complementary to that of GluR2/3+ neurons. This distinct arrangement indicates functional differences into and between the DC nuclei, also signaling that such variation could be attributed to the diverse nature of the subunit composition of the GluRs. Discussion addresses the morphological and functional correlation of the avian DC with the LVN of mammals in addition to the high morphological correspondence, To include these data into the modern comparative approach we propose to adopt a similar nomenclature for the avian divisions dND and vND that could be referred as dLVN and vLVN. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To compare baroreflex sensitivity among conscious rats of the same strain. Methods: Male WKY rats (eight weeks old) were studied. Cannulas were inserted into the abdominal aortic artery through the right femoral artery to measure mean arterial pressure (MAP) and heart rate (HR). Baroreflex gain was calculated as the ratio between variation of HR in function of the MAP variation (Delta HR/Delta MAP) tested with a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, iv) and with a pressor dose of phenylephrine (PE, 8 mu g/kg, iv). We divided the rats into four groups: 1) Low bradycardic baroreflex (LB), BG between -1 and -2 bpm/mmHg tested with PE; 2) High bradycardic baroreflex (HB), BG < -2 bpm/mmHg tested with PE; 3) Low tachycardic baroreflex (LT), BG between -1 and -2 bpm/mmHg tested with SNP and; 4) High tachycardic baroreflex (HT), BG < -2 bpm/mmHg tested with SNP. Significant differences were considered for p<0.05. Results: Approximately 82% of the rats presented reduced bradycardic reflex while 22 showed attenuated tachycardic reflex. No alterations were noted regarding basal MAP and HR, tachycardic and bradycardic peak and HR range. Conclusions: There was alteration in baroreflex sensitivity among rats of the same strain. Care should be taken when interpreting studies employing WKY as a control for the SHR.
Resumo:
In this study the baroreflex sensitivity of conscious, juvenile, spontaneously hypertensive rats (SHRs) was compared. The study population consisted of 19 eight-week-old male SHRs. The baroreflex sensitivity was quantified as the derivative of the variation in heart rate (HR) and the variation of mean arterial pressure (baroreflex sensitivity = Delta HR/Delta MAP). MAP was manipulated with sodium nitroprusside (SNP) and phenylephrine (PHE), administered via an inserted cannula in the right femoral vein. The SHRs were divided into four groups: (1) low bradycardic baroreflex (LB) where the baroreflex gain (BG) was between 0 and 1 bpm/mmHg with PHE; (2) high bradycardic baroreflex (HB), where the BG was < -1 bpm/mmHg with PHE; (3) low tachycardic baroreflex (LT) where the BC was between 0 and 3 bpm/mmHg with SNP; (4) high tachycardic baroreflex (HT) where the BG was > 3 bpm/mmHg with SNP. We noted that 36.8% of the rats presented with an increased bradycardic reflex, while 27.8% demonstrated an attenuated tachycardic reflex. No significant alterations were noted regarding the basal MAP and HR. There were significant differences in the baroreflex sensitivity between SHRs in the same laboratory. One should be careful when interpreting studies employing the SHR as a research model.
Resumo:
The present study investigated the effects of exercise training on arterial pressure, baroreflex sensitivity, cardiovascular autonomic control and metabolic parameters on female LDL-receptor knockout ovariectomized mice. Mice were divided into two groups: sedentary and trained. Trained group was submitted to an exercise training protocol. Blood cholesterol was measured. Arterial pressure (AP) signals were directly recorded in conscious mice. Baroreflex sensitivity was evaluated by tachycardic and bradycardic responses to AP changes. Cardiovascular autonomic modulation was measured in frequency (FFT) and time domains. Maximal exercise capacity was increased in trained as compared to sedentary group. Blood cholesterol was diminished in trained mice (191 +/- 8 mg/dL) when compared to sedentary mice (250 +/- 9 mg/dL, p<0.05). Mean AP and HR were reduced in trained group (101 +/- 3 mmHg and 535 +/- 14 bpm, p<0.05) when compared with sedentary group (125 +/- 3 mmHg and 600 +/- 12 bpm). Exercise training induced improvement in bradycardic reflex response in trained animals (-4.24 +/- 0.62 bpm/mmHg) in relation to sedentary animals (-1.49 +/- 0.15 bpm/mmHg, p<0.01); tachycardic reflex responses were similar between studied groups. Exercise training increased the variance (34 +/- 8 vs. 6.6 +/- 1.5 ms(2) in sedentary, p<0.005) and the high-frequency band (HF) of the pulse interval (IP) (53 +/- 7% vs. 26 +/- 6% in sedentary, p<0.01). It is tempting to speculate that results of this experimental study might represent a rationale for this non-pharmacological intervention in the management of cardiovascular risk factors in dyslipidemic post-menopause women. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objective: The aim of this study was to investigate the effects of exercise training on cardiovascular autonomic dysfunction in ovariectomized rats submitted to myocardial infarction. Methods: Female Wistar rats were divided into the following ovariectomized groups: sedentary ovariectomized (SO), trained ovariectomized (TO), sedentary ovariectomized infarcted (SOI), and trained ovariectomized infarcted (TOI). Trained groups were submitted to an exercise training protocol on a treadmill (8 wk). Arterial baroreflex sensitivity was evaluated by heart rate responses to arterial pressure changes, and cardiopulmonary baroreflex sensitivity was tested by bradycardic and hypotension responses to serotonin injection. Vagal and sympathetic effects were calculated by pharmacological blockade. Results: Arterial pressure was reduced in the TO in comparison with the SO group and increased in the TOI in relation to the SOI group. Exercise training improved the baroreflex sensitivity in both the TO and TOI groups. The TOI group displayed improvement in cardiopulmonary reflex sensitivity compared with the SOI group at the 16 mu g/kg serotonin dose. Exercise training enhanced the vagal effect in both the TO (45%) and TOI (46%) animals compared with the SO and SOI animals and reduced the sympathetic effect in the TOI (38%) in comparison with the SOI animals. Significant correlations were obtained between bradycardic baroreflex responses and vagal (r = -0.7, P < 0.005) and sympathetic (r = 0.7, P < 0.001) effects. Conclusions: These results indicate that exercise training in ovariectomized rats submitted to myocardial infarction improves resting hemodynamic status and reflex control of the circulation, which may be due to an increase in the vagal component. This suggests a homeostatic role for exercise training in reducing the autonomic impairment of myocardial infarction in postmenopausal women.
Resumo:
Inhibitory neurotransmission has an important role in the processing of sensory afferent signals in the nucleus of the solitary tract (NTS), particularly in spontaneously hypertensive rats (SHR). In the present study, we tested the hypothesis that gamma-aminobutyric acid (GABA) mediated neurotransmission within the NTS produces an inhibition of the baroreflex response of splanchnic sympathetic nerve discharge (sSND). In urethane-anesthetized, artificially ventilated and vagotomized male SHR and Wistar Kyoto (WKY) rats we compared baroreflex-response curves evoked after bilateral injections into the NTS of the GABA-A antagonist bicuculline (25 pmol/50 nl) or the GABA-B antagonist CGP 35348 (5 nmol/50 nl). Baseline MAP in SHR was higher than the WKY rats (SHR: 153+/-5, vs. WKY: 112+/-6 mm Hg, p<0.05). Bilateral injection of bicuculline or CGP 35348 into the NTS induced a transient (5 min) reduction in MAP (Delta = -26+/-4 and -41+/-6 mm Hg, respectively vs. saline Delta = +4+/-3 mm Hg, p<0.05) and sSND (Delta = -21+/-13 and -78+/-7%, respectively vs. saline: Delta = +6+/-4% p<0.05). Analysis of the baroreceptor curve revealed a decrease in the lower plateau (43+/-11 and 15+/-5%, respectively vs. saline: 78+/-6%, p<0.05) and an increase in the sympathetic gain of baroreflex (6.3+/-0.3, 7.2+/-0.8% respectively vs. saline: 4.2+/-0.4%, p<0.05). Bicuculline or CGP35348 into the NTS in WKY rats did not change MAP, sSND and sympathetic baroreflex gain. These data indicate that GABAergic mechanisms within the NTS act tonically reducing sympathetic baroreflex gain in SHR. Crown Copyright (C) 2010 Published by Elsevier By. All rights reserved.