19 resultados para polylysine hydrobromide modified cellulose film prepn

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and local ordering of 1,6-hexamethylenediisocyanate-(acetoxypropy1) cellulose (HDI-APC) liquid crystalline elastomer thin films are investigated by using X-ray diffraction and scattering techniques. Optical microscopy and mechanical essays are performed to complement the investigation. The study is performed in films subjected or not to an uniaxial stress. Our results indicate that the film is constituted by a bundle of helicoidal fiber-like structure, where the cellobiose block spins around the axis of the fiber, like a string-structure in a smectic-like packing, with the pitch defined by a smectic-like layer. The fibers are in average perpendicular to the smectic-like planes. Without the stretch, these bundles are warped, only with a residual orientation along the casting direction. The stretch orients the bundles along it, increasing the smectic-like and the nematic-like ordering of the fibers. Under stress, the network of molecules which connects the cellobiose blocs and forms the cellulosic matrix tends to organize their links in a hexagonal-like structure with lattice parameter commensurate to the smectic-like structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM) in feedback mode was employed to characterise the reactivity and microscopic peculiarities of bismuth and bismuth/lead alloys plated onto gold disk substrates in 0.1 molL(-1) NaOH solutions. Methyl viologen was used as redox mediator, while a platinum microelectrode was employed as the SECM tip. The metal films were electrodeposited ex situ from NaOH solutions containing either bismuth ions only or both bismuth and lead ions. Approach curves and SECM images indicated that the metal films were conductive and locally reactive with oxygen to provide Bi(3+) and Pb(2+) ions. The occurrence of the latter chemical reactions was verified by local anodic stripping voltammetry (ASV) at the substrate solution interface by using a mercury-coated platinum SECM tip. The latter types of measurements allowed also verifying that lead was not uniformly distributed onto the bismuth film electrode substrate. These findings were confirmed by scanning electron microscopy images. The surface heterogeneity produced during the metal deposition process, however, did not affect the analytical performance of the bismuth coated gold electrode in anodic stripping voltammetry for the determination of lead in alkaline media, even in aerated aqueous solutions. Under the latter conditions, stripping peak currents proportional to lead concentration with a satisfactory reproducibility (within 5% RSD) were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for biodegradable polymers for packaging has fostered the development of novel, biodegradable polymeric materials from natural sources, as an alternative to reduce amount of waste and environmental impacts. The present investigation involves the synthesis of chitosan nanoparticles-carboxymethylcellulose films, in view of their increasing areas of application in packaging industry. The entire process consists of 2-steps including chitosan nanoparticles preparation and their incorporation in carboxymethylcellulose films. Uniform and stable particles were obtained with 3 different chitosan concentrations. The morphology of chitosan nanoparticles was tested by transmission electron microscopy, revealing the nanoparticles size in the range of 80 to 110 nm. The developed film chitosan nanoparticles-carboxymethylcellulose films were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis, solubility tests, and mechanical analysis. Improvement of thermal and mechanical properties were observed in films containing nanoparticles, with the best results occurring upon addition of nanoparticles with 110 nm size in carboxymethylcellulose films. Practical Application Carboxymethylcellulose films containing chitosan nanoparticles synthesized and characterized in this article could be a potential material for food and beverage packaging applications products due to the increase mechanical properties and high stability. The potential application of the nanocomposites prepared would be in packaging industry to extend the shelf life of products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel biosensor for glucose was prepared by adsorption of 1,1`-bis(4-carboxybenzyl)-4,4`-bipyridinium di-bromide compound (H(2)BpybcBr(2)) onto the surface of a nanocrystalline TiO(2) film deposited onto FTO glasses, which was used as a platform to assemble the enzyme glucose oxidase to the electrode surface. The H(2)BpybcBr(2)/TiO(2)/FTO modified electrode was characterized by scanning electron microscopy, X-ray fluorescence image, cyclic voltammograms and spectroelectrochemical measurements. The immobilization of GOD on functionalized TiO(2) film led to stable amperometric biosensing for glucose with a linear range from 153 mu mol L(-1) to 1.30 mmol L(-1) and a detection limit of 51 mu mol L(-1). The apparent Michaelis-Menten constant (K(m)) was estimated to be 3.76 mmol L(-1), which suggested a high enzyme-substrate affinity. The maximum electrode sensitivity was 1.25 mu A mmol L(-1). The study proved that the combination of viologen mediators with TiO(2) film retains the electrocatalytic activity of the enzyme, and also enhances the electron transfer process, and hence regenerating the enzyme in the reaction with glucose. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes the synthesis of platinum nanoparticles followed by their electrophoretic deposition onto transparent fluorine-doped tin oxide electrodes. The nano-Pt-modified electrodes were characterized by voltammetric studies in acidic solutions showing a great electrocatalytic behavior towards H(+) reduction being very interesting for fuel cell applications. Morphological characterization was performed by atomic force microscopy on different modified electrodes showing a very rough surface which can be tuned by means of time of deposition. Also, nickel hydroxide thin films were galvanostatically grown onto these electrodes showing an interesting electrochemical behavior as sharper peaks, indicating a faster ionic exchange from the electrolyte to the film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrodeposition of bismuth on gold microelectrodes for determination of Pb(II) by square wave anodic stripping voltammetry (SWASV) was accomplished by an in situ procedure in alkaline solution. A linear calibration plot for Pb(II) in the concentration range 40 to 6700 nmol L(-1) (r=0.998) was obtained, the detection limit was found to be 12.5 nmol L(-1) (S/N = 3) and the relative standard deviation in Solutions containing 1 mu mol L(-1) Pb(II) was 4% (n = 12). The analytical performance of the proposed sensor wits tested by measuring the Pb(II) concentration in a wine sample. The result Was in good agreement with the one obtained by GFAAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensor for H2O2 amperometric detection based on a Prussian blue (PB) analogue was developed. The electrocatalytic process allows the determination of hydrogen peroxide at 0.0 V with a limit of detection of 1.3 mu mol L-1 in a flow injection analysis (FIA) configuration. Studies on the optimization of the FIA parameters were performed and under optimal FIA operational conditions the linear response of the method was extended up to 500 mu mol L-1 hydrogen peroxide with good stability. The possibility of using the developed sensor in medium containing sodium ions and the increased operational stability constitute advantages in comparison with PB-based amperometric sensors. The usefulness of the methodology was demonstrated by addition-recovery experiments with rainwater samples and values were in the 98.8 to 103% range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin-coated films of cellulose acetate (CA), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB) and carboxymethylcellulose acetate butyrate (CMCAB) have been characterized by ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The films were spin-coated onto silicon wafers, a polar surface. Mean thickness values were determined by means of ellipsometry and AFM as a function of polymer concentration in solutions prepared either in acetone or in ethyl acetate (EA), both are good solvents for the cellulose esters. The results were discussed in the light of solvent evaporation rate and interaction energy between substrate and solvent. The effects of annealing and type of cellulose ester on film thickness, film morphology, surface roughness and surface wettability were also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrocatalytic oxidation of ascorbate on a ruthenium oxide hexacyanoferrate (RuOHCF) glassy carbon (GC) modified electrode was investigated at pH 6.9 by using rotating disc electrode (RDE) voltammetry. The influence of the systematic variation of rotation rate, film thickness, ascorbate concentration and the electrode potential indicated that the rate of cross-chemical reaction between Ru(III) centres immobilized into the film and ascorbate controls the overall process. The kinetic regime may be classified as a Sk `` mechanism and the second order rate constant for the surface electrocatalytic reaction was found to be 1.56 x 10(-3) mol(-1) L-1 s(-1) cm. A carbon fibre microelectrode modified with the RuOHCF film was successfully used as an amperometric sensor to monitor the ascorbate diffusion in a simulated microenvironment experiment. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pyrolytic graphite electrodes (PGE) were modified into dopamine solutions using phosphate buffer solutions, pH 10 and 6.5, as supporting electrolyte. The modification process involved a previous anodization of the working electrode at +1. 5 V into 0. 1 mol-L-1 NaOH followed by other anodization step, in the same experimental conditions, into dopamine (DA) solutions. pH of the supporting electrolyte performed an important role in the production of a superficial melanin polymeric film, which permitted the simultaneous detection of ascorbic acid (AA), (DA) and uric acid (UA), Delta EAA-DA = 222 mV-, Delta EAA-UA = 360 mV and Delta EDA-UA=138mV, avoiding the superficial poisoning effects. The calculated detection limits were: 1.4 x 10(-6) mol L-1 for uric acid, 1.3x10-(5) molL(-1) for ascorbic acid and 1.1 X 10(-7) mol L-1 for dopamine, with sensitivities of (7.7 +/- 0.5), (0.061 +/- 0.001) and (9.5 +/- 0.05)A mol(-1) cm(-2), respectively, with no mutual interference. Uric acid was determined in urine, blood and serum human samples after dilution in phosphate buffer and no additional sample pre-treatment was necessary. The concentration of uric acid in urine was higher than the values found in blood and serum and the recovery tests (92-102%) indicated that no matrix effects were observed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anodic oxidation of ascorbic acid on a ruthenium oxide hexacyanoferrate modified electrode was characterized by cyclic voltammetry. On this modified surface, the electrocatalytic process allows the determination of ascorbic acid to be performed at 0.0 V and pH 6.9 with a limit of detection of 2.2 mu M in a flow injection configuration. Under this experimental condition, no interference from glucose, nitrite and uric acid was noticed. Lower detection limit values were obtained by measuring flow injection analysis (FIA) responses at 0.4 V (0.14 mu M), but a concurrent loss of selectivity is expected at this more positive potential. Under optimal FIA operating conditions, the linear response of the method was extended up to 1 mM ascorbic acid. The repeatability of the method for injections of a 1.0 mM ascorbic acid solution was 2.0% (n=10). The usefulness of the method was demonstrated by an addition-recovery experiment with urine samples and the recovered values were in the 98-104% range. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deposition and characterization of Se films doped with Pb underpotentially deposited (UPD) ad-atoms was studied in this work. The employed experimental techniques were cyclic voltammetry, chronoamperometry, electrochemical impedance spectroscopy, UV-vis spectroscopy and atomic force microscopy. The initial deposition of Se film by chronoamperometry yielded a thin film composed of approximately 700 layers. The Pb UPD on Se was achieved by chronoamperometry in a potential value previously determined in voltammetric experiments. This deposition yielded a deposition charge of approximately 7.5% of the total one. The film resistance altered from 320 Omega cm(2) for Se to 65 Omega cm(2) for the Se/Pb one. Flat band potential values and number of acceptors and donors were also calculated for both films and the values obtained were + 0.95 and -0.51 V for Se and Se/Pb, respectively. The Se coating presented 1.2 x 10(17) cm(3) acceptors while the Se/Pb one presented 3.2 x 10(17) cm(3) donors. The band gap values for both films were 2.4 eV and 1.9 eV, correspondingly. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, films based on linter cellulose and chitosan were prepared using an aqueous solution of sodium hydroxide (NaOH)/thiourea as the solvent system. The dissolution process of cellulose and chitosan in NaOH/thiourea aqueous solution was followed by the partial chain depolymerization of both biopolymers, which facilitates their solubilization. Biobased films with different chitosan/cellulose ratios were then elaborated by a casting method and subsequent solvent evaporation. They were characterized by X-ray analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis, and tests related to tensile strength and biodegradation properties. The SEM images of the biofilms with 50/50 and 60/40 ratio of chitosan/cellulose showed surfaces more wrinkled than the others. The AFM images indicated that higher the content of chitosan in the biobased composite film, higher is the average roughness value. It was inferred through thermal analysis that the thermal stability was affected by the presence of chitosan in the films; the initial temperature of decomposition was shifted to lower levels in the presence of chitosan. Results from the tests for tensile strength indicated that the blending of cellulose and chitosan improved the mechanical properties of the films and that an increase in chitosan content led to production of films with higher tensile strength and percentage of elongation. The degradation study in a simulated soil showed that the higher the crystallinity, the lower is the biodegradation rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A copper phthalocyanine/multiwalled carbon nanotube film-modified glassy carbon electrode has been used for the determination of the herbicide glyphosate (Gly) at -50 mV vs. SCE by electrochemical oxidation using differential pulse voltamtnetry (DPV). Cyclic voltammetry and electrochemical impedance spectroscopy showed that Gly is adsorbed on the metallic centre of the copper phthalocyanine molecule, with formation of Gly-copper ion complexes. An analytical method was developed using DPV in pH 7.4 phosphate buffer solution, without any pretreatment steps: Gly was determined in the concentration range of 0.83-9.90 mu mol L(-1), with detection limit 12.2 nmol L(-1) (2.02 mu g L(-1))

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmentally friendly biocomposites were successfully prepared by dissolving chitosan and cellulose in a NaOH/thiourea solvent with subsequent heating and film casting. Under the considered conditions, NaOH/thiourea led to chain depolymerization of both biopolymers without a dramatic loss of film forming capacities. Compatibility of both biopolymers in the biocomposite was firstly assessed through scanning electron microscopy, revealing an intermediate organization between cellulose fiber network and smoothness of pure chitosan. DSC analyses led to exothermic peaks close to 285 and 315 degrees C for the biocomposite, compared to the exothermic peaks of chitosan (275 degrees C) and cellulose (265 and 305 degrees C), suggesting interactions between chitosan and cellulose. Contact angle analyses pointed out the deformation that can occur at the surface due to the high affinity of the;e materials with water. T(2) NMR relaxometry behavior of biocomposites appeared to be dominated by chitosan. Other properties of films, as crystallinity, water sorption isotherms, among others, are also discussed. (C) 2010 Published by Elsevier Ltd.