4 resultados para polylactic acid-polyglycolic acid copolymer
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The synthesis of isosorbide aliphatic polyesters is demonstrated by the use of Novozym 435, a catalyst consisting of Candida antarctica lipase B immobilized on a macroporous support Several experimental procedures were tested and azeotropic distillation was most effective in removing low mass byproduct Furthermore, the use of diethyl ester derivatives of diacid comonomers gave isosorbide copolyesters with highest Isolated yield and molecular weights The length of the diacid aliphatic chain was less restrictive, but with a clear preference for longer aliphatic chains The molecular mass values of the obtained products were equivalent or higher than those obtained by nonenzymatic polymerizations, a clear illustration of the potential of enzymatic over conventional catalysis The ability of Novozym 435 to catalyze the synthesis of isosorbide polyester with weight-average molecular weights in excess of 40000 Da was unexpected given that isosorbide has two chemically distinct secondary hydroxyl groups This is the first example in which isosorbide polyesters were synthesized by enzyme catalysis, opening a large array of possibilities for this important class of biomass-derived building blocks Because these polymers are potential biomaterials the total absence of conventional Lewis acid catalyst residues represents a major Improvement in the toxicity of the material
Resumo:
Introduction: Nerve allografting is regarded as a treatment of choice in large neural tissue losses preventing repair by primary anastomosis. In these cases, a synthetic polyglycolic acid tube is an alternative for nerve grafting. On the other hand, several studies have emphasized the importance of neurotrophic factors on neural regeneration, including substances with potential to optimize neural regeneration, especially the GM1, an neurotrophic enhancer factor. Objective: to compare, in rats, the neural regeneration degree using histological analysis, regenerated myelinized axons count, and functional analysis with the use of neurotube and GM1. Methods: This assessment was performed by interposing allograft (group A), polyglycolic acid tube (group B) and polyglycolic acid tube associated to GM1 (group C) on 5-mm sciatic nerve defects. Results: Neuroma formation was found only on group A. Groups A and C showed similar histological patterns, except for the regenerated axons on group C, which were shown to be better organized and myelinized than in group A. Conclusion: on functional recovery, no statistically significant difference was found for the three groups, despite of qualitative and quantitative histological differences found.
Resumo:
Ordered mesoporous silica with cubic structure, type FDU-1, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butilene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)) and tetraethyl orthosilicate (TEOS). Humic acid (HA) was modified to the synthesis process at a concentration of 1.5 mmol per gram of SiO(2). Thermogravimetry, small angle X-ray diffraction, nitrogen adsorption and high resolution transmission electron microscopy were used to characterize the samples. The pristine FDU-1 and FDU-1 with incorporated 1.5 mmol of HA were tested for adsorption of Pb(2+), Cu(2+) and Cd(2+) in aqueous solution. Incorporation of humic acid into the FDU-1 silica afforded an adsorbent with strong affinity for Cd(2+), Cu(2+) and Pb(2+) from single ion solutions. Adsorption of Cu(2+) was significantly enhanced after incorporation of humic acid, a fact that can be explained by the formation of complexes with carboxylic and phenolic groups at low concentrations of the metal cation. The results demonstrated the potential applicability of FDU-1 with incorporated HA in the removal of low concentrations of heavy metal cations from aqueous solution, such as wastewaters, after usual precipitation of metal hydroxides in alkaline medium and proper pH conditioning in the range between 6 and 7. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
A new aliphatic block copolyester was synthesized in bulk from transesterification techniques between poly((R)-3-hydroxybutyrate) (PHB) and poly(isosorbide succinate) (PIS). Additionally, other two block copolyesters were synthesized in bulk either from transesterification reactions involving PHB and poly(l-lactide) (PLLA) or from ring-opening copolymerization of l-lactide and hydroxyl-terminated PHB, as result of a previous transesterification reactions with isosorbide. Two-component blends of PHB and PIS or PLLA were also prepared as comparative systems. SEC, MALDI-TOF mass spectrometry (MALDI-TOFMS), (1)H and (13)C NMR spectroscopy, WAXD, solubility tests, and TG thermal analysis were used for characterization. The block copolymer structures of the products were evidenced by MALDI-TOFMS, (13)C NMR, and WAXD data. The block copolymers and the corresponding binary blends presented different solubility properties, as revealed by solubility tests. Although the incorporation of PIS sequences into PHB main backbone did not enhance the thermal stability of the product, it reduced its crystallinity, which could be advantageous for faster biodegradation rate. These products, composed of PHB and PIS or PLLA sequences, are an interesting alternative in biomedical applications.