12 resultados para pollination biology
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Studies on the pollination biology of Eriocaulaceae are scarce although particularly interesting because of its inclusion in the Poales, a predominantly wind-pollinated order. The pollination biology of Syngonanthus elegans (Bong.) Ruhland was studied during two annual flowering periods to test the hypothesis that insect pollination was its primary pollination system. A field study was carried out, including observations of the morphology and biology of the flowers, insect visits and pollinator behaviour. We also evaluated seed set, seed germination and seedling development for different pollination modes. Although seeds were produced by self-pollination, pollination by small insects contributed most effectively to the reproductive success of S. elegans, resulting in the greatest seed set, with the highest germination percentage and optimum seedling vigour. The. oral resources used by flower visitors were pollen and nectar that was produced by staminate and pistillate flowers. Self-pollination played a minor role and its consequence was inbreeding depression.
Resumo:
The floral phenology and reproductive biology of six sympatric arboreal Myrtaceae species were studied in the coastal plain forest (Ubatuba, Brazil, 44 degrees 48`W 23 degrees 22`S), from September 1999 to April 2002. Flowering started in the transition from the driest to the most humid season (Sep/Oct) and lasted until March. The sequence with which the species flowered each year was consistently the same. However, the timing of flowering onset, peak, end, and overlap differed from one year to another. Myrtaceae species were classified as xenogamic according to the pollen:ovule ratios, but two of them seem to present some degree of self-compatibility. Flowers of all species opened at sunrise and lasted for I day. Bombus morio (Apidae: Bombini) was the most common visitor followed by Melipona rufiventris (Apidae: Meliponini). Buzz pollination in Myrtaceae was common at the study area and seems to be related to bees` behaviour and to some aspects of flowers` morphology.
Resumo:
The diversity of floral forms has long been considered a prime example of radiation through natural selection. However, little is still known about the evolution of floral traits, a critical piece of evidence for the understanding of the processes that may have driven flower evolution. We studied the pattern of evolution of quantitative floral traits in a group of Neotropical lianas (Bignonieae, Bignoniaceae) and used a time-calibrated phylogeny as basis to: (1) test for phylogenetic signal in 16 continuous floral traits; (2) evaluate the rate of evolution in those traits; and (3) reconstruct the ancestral state of the individual traits. Variation in floral traits among extant species of Bignonieae was highly explained by their phylogenetic history. However, opposite signals were found in floral traits associated with the attraction of pollinators (calyx and corolla) and pollen transfer (androecium and gynoecium), suggesting a differential role of selection in different floral whorls. Phylogenetic independent contrasts indicate that traits evolved at different rates, whereas ancestral character state reconstructions indicate that the ancestral size of most flower traits was larger than the mean observed sizes of the same traits in extant species. The implications of these patterns for the reproductive biology of Bignonieae are discussed. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 378-390.
Resumo:
Evolutionary biologists have long endeavored to document how many species exist on Earth, to understand the processes by which biodiversity waxes and wanes, to document and interpret spatial patterns of biodiversity, and to infer evolutionary relationships. Despite the great potential of this knowledge to improve biodiversity science, conservation, and policy, evolutionary biologists have generally devoted limited attention to these broader implications. Likewise, many workers in biodiversity science have underappreciated the fundamental relevance of evolutionary biology. The aim of this article is to summarize and illustrate some ways in which evolutionary biology is directly relevant We do so in the context of four broad areas: (1) discovering and documenting biodiversity, (2) understanding the causes of diversification, (3) evaluating evolutionary responses to human disturbances, and (4) implications for ecological communities, ecosystems, and humans We also introduce bioGENESIS, a new project within DIVERSITAS launched to explore the potential practical contributions of evolutionary biology In addition to fostering the integration of evolutionary thinking into biodiversity science, bioGENESIS provides practical recommendations to policy makers for incorporating evolutionary perspectives into biodiversity agendas and conservation. We solicit your involvement in developing innovative ways of using evolutionary biology to better comprehend and stem the loss of biodiversity.
Resumo:
(Stigmatic surface, reproductive biology and taxonomy of the Vochysiaceae). The Vochysiaceae are Neotropical trees and shrubs, common in the savanna areas in Central Brazil (Cerrados). The family has been traditionally divided into two tribes: Erismeae, with three genera, and Vochysieae, with five genera. We investigated the stigmatic surface of six Vochysiaceae species, belonging to four genera of Vochysieae: Vochysia, Salvertia, Callisthene and Qualea. Flowers and buds at different developmental stages were collected. Morphological features were observed on fresh material and stigmatic receptivity was inferred based on esterasic activity. Pistils were fixed and embedded in paraplast and sectioned on a rotary microtome; the sections were stained before histological analysis. Stigmas of open flowers were also observed by scanning electron microscopy. Stigmas of all species were wet and showed esterasic activity at pre-anthesis and anthesis stages. Stigmatic surface was continuous with transmitting tissue of glandular nature. Vochysia and Salvertia stigmatic surfaces were formed by multicelular uniseriate hairs, and species of the remaining genera showed papillate surface. The exudate over mature stigmas in all species flowed without rupture of stigmatic Surface and pollen tubes grew down between hairs or papillae. Differences on the stigmatic surface agreed with a phylogenetic reconstruction that separated two clades and indicated that Vochysieae is not monophyletic. Stigmatic features could not be associated with pollination and breeding systems.
Resumo:
Mutualism-network studies assume that all interacting species are mutualistic partners and consider that all links are of one kind. However, the influence of different types of links, such as cheating links, on network organization remains unexplored. We studied two flower-visitation networks (Malpighiaceae and Bignoniaceae and their flower visitors), and divide the types of link into cheaters (i.e. robbers and thieves of flower rewards) and effective pollinators. We investigated if there were topological differences among networks with and without cheaters, especially with respect to nestedness and modularity. The Malpighiaceae network was nested, but not modular, and it was dominated by pollinators and had much fewer cheater species than Bignoniaceae network (28% versus 75%). The Bignoniaceae network was mainly a plant-cheater network, being modular because of the presence of pollen robbers and showing no nestedness. In the Malpighiaceae network, removal of cheaters had no major consequences for topology. In contrast, removal of cheaters broke down the modularity of the Bignoniaceae network. As cheaters are ubiquitous in all mutualisms, the results presented here show that they have a strong impact upon network topology.
Resumo:
The Collared Crescentchest (Melanopareia torquata) is an endemic bird of the Cerrado (Family: Melanopareiidae), and is listed in the State of Sao Paulo, Brazil as ""endangered"". We studied the breeding biology of Collared Crescentchest at two nests in the State of sao Paulo, southeast Brazil. Males were identified genetically and equipped with radio-transmitters. The incubation period was 12-16 days and the nestling period was 12-14 days. Nestling body mass was measured every second day for the first 10 days. Males participated in incubation and helped with nesting care. Measurements of eggs and nests are compared to those from the single previously known nest. These data are the first for any member of the Family Melanopareiidae. Received 27 March 2009. Accepted 28 August 2009.
Resumo:
A major current challenge in evolutionary biology is to understand how networks of interacting species shape the coevolutionary process. We combined a model for trait evolution with data for twenty plant-animal assemblages to explore coevolution in mutualistic networks. The results revealed three fundamental aspects of coevolution in species-rich mutualisms. First, coevolution shapes species traits throughout mutualistic networks by speeding up the overall rate of evolution. Second, coevolution results in higher trait complementarity in interacting partners and trait convergence in species in the same trophic level. Third, convergence is higher in the presence of super-generalists, which are species that interact with multiple groups of species. We predict that worldwide shifts in the occurrence of super-generalists will alter how coevolution shapes webs of interacting species. Introduced species such as honeybees will favour trait convergence in invaded communities, whereas the loss of large frugivores will lead to increased trait dissimilarity in tropical ecosystems.
Resumo:
We studied clutch size, hatching and fledging success, and time necessary for chick Kelp Gulls (Larus dominicanus) to leave the nest throughout two breeding seasons (2004 and 2005) on Guararitama Island, Sao Paulo, Brazil. We followed 93 nests in 2004 and 97 nests in 2005. The average (+/- SD) clutch size was 2.09 +/- 0.64 in 2004 and 1.93 +/- 0.59 in 2005. Hatching success was 74% in 2004 and 53% in 2005, and fledging success was 54% in 2004 and 58% in 2005. Chicks grew quickly, following the linear equation y(t) = 61g + 17.03g X age (in days), and began to fly at 40 days. Received 11 August 2008. Accepted 28 August 2009.
Resumo:
Fire is an important factor in several ecosystems, affecting plant population biology. Campos grasslands are under constant influence of disturbance, mostly grazing and fire. However, few studies evaluated the effect of fire on plant population biology of grassland species. Therefore, we aim to analyze the effect of fire on the population biology of four species, from different functional groups and regeneration strategies: Chaptalia runcinata (forb, resprouter, absence of belowground organ), Vernonia flexuosa (forb, resprouter, presence of rhizophore), Eupatorium ligulaefolium (shrub, resprouter, presence of xylopodium) and Heterothalamus psiadioides (shrub, obligate seeder). Seven plots were established in different sites in southern Brazil: frequently burned (FB) and excluded from fire since 6 years (E). All plots were subjected to controlled burns during summer. Before experiments, populations were sampled. Further observations were carried out after 90 and after 360 days of fire experiments. In addition, we counted the number of seedlings and resprouters recruited after fire. Heat shock experiments were conducted with two species (H. psiadioides and V. flexuosa), as well as the study of the bud bank of the following species: E. ligulaefolium and V. flexuosa. The obligate seeder species had all individuals killed by fire and established only after 1 year. Resprouters, however, showed new stems immediately after fire. E. ligulaefolium and V. flexuosa showed only vegetative regeneration from belowground organs and more individuals in excluded sites 1 year after the fire. The bud bank of E. ligulaefolium tended to be larger in excluded sites, whilst V. flexuosa showed an opposite result. High temperatures did not enhance nor kill seeds from both studied species. Vegetative regeneration was the most important strategy for all studied species, except for H. psiadioides, the obligate seeder species. Fire thus, plays an important role on population structure and demography, being also important for plant recruitment.
Resumo:
Structure of inflorescences and flowers and flowering behaviour are reported for the woody liana Anchietea pyrifolia (Violaceae) from Brazil. The specimen studied is grown for some decades now in the greenhouses of Halle Botanical Garden and turned out unisexually male, which adds a further example of dioecism to the family Violaceae, in which this type of sex distribution is rarely encountered. The flowers are exceptional also for the strongly asymmetric anterior petal, which represents a rare case of a species with enantiomorphic flowers pollinated by Lepidoptera. They have a fully developed gynoecium with a complicated architecture comparable to the pistil of bisexual Violaceae flowers, though without ovules. The style head is capable to release viscose liquid on tactile stimulation or pressure, which is known to act as pollen-gathering mechanism in bisexual Violaceae species with usually dry pollen and buzz-pollination. This function has switched in male A. pyrifolia to a mechanism for efficient pollen release mediated by insect pollinators from its short-lived flowers. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Mathematical models, as instruments for understanding the workings of nature, are a traditional tool of physics, but they also play an ever increasing role in biology - in the description of fundamental processes as well as that of complex systems. In this review, the authors discuss two examples of the application of group theoretical methods, which constitute the mathematical discipline for a quantitative description of the idea of symmetry, to genetics. The first one appears, in the form of a pseudo-orthogonal (Lorentz like) symmetry, in the stochastic modelling of what may be regarded as the simplest possible example of a genetic network and, hopefully, a building block for more complicated ones: a single self-interacting or externally regulated gene with only two possible states: ` on` and ` off`. The second is the algebraic approach to the evolution of the genetic code, according to which the current code results from a dynamical symmetry breaking process, starting out from an initial state of complete symmetry and ending in the presently observed final state of low symmetry. In both cases, symmetry plays a decisive role: in the first, it is a characteristic feature of the dynamics of the gene switch and its decay to equilibrium, whereas in the second, it provides the guidelines for the evolution of the coding rules.