60 resultados para plasma membrane molecular organization

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells normally undergo physiological turnover through the induction of apoptosis and phagocytic removal, partly through exposure of cell surface phosphatidylserine (PS). In contrast, neutrophils appear to possess apoptosis-independent mechanisms of removal. Here we show that Galectin-1 (Gal-1) induces PS exposure independent of alterations in mitochondrial potential, caspase activation, or cell death. Furthermore, Gal-1-induced PS exposure reverts after Gal-1 removal without altering cell viability. Gal-1-induced PS exposure is uniquely microdomain restricted, yet cells exposing PS do not display evident alterations in membrane morphology nor do they exhibit bleb formation, typically seen in apoptotic cells. Long-term exposure to Gal-1 prolongs PS exposure with no alteration in cell cycle progression or cell growth. These results demonstrate that Gal-1-induced PS exposure and subsequent phagocytic removal of living cells represents a new paradigm in cellular turnover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes has been implicated in the dryness of the mouth, loss of taste sensation, sialosis, and other disorders of the oral cavity, by impairment of the salivary glands. The aim of the present study was to examine the plasma membrane, microsomal, and homogenate Ca(2+)-ATPase activity in the rat submandibular and parotid salivary glands of streptozotocin-induced diabetes. We have also examined the influence of the acidosis state oil this parameter. Diabetes was induced by an intraperitoneal injection of streptozotocin and acidosis was induced by daily injection of NH(4)Cl. At 15 and 30 days after diabetes induction, the animals were euthanized and the submandibular and parotid salivary glands were removed and analyzed. Ca(2+)-ATPase (total, independent, and dependent) was determined in the homo-enate, microsomal, and plasma membranes of the salivary glands of diabetic and control rats. Calcium concentration was also determined in the glands and showed to be hi-her in the diabetic animals. Ca(2+)-ATPase activity was found to be reduced in all cell fractions studied in the diabetic animals compared with control. Similar results were obtained for the submandibular salivary glands of acidotic animals; however in the parotid salivary glands it was found an increase in the enzyme activity. Copyright (c) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protozoan parasite Leishmania causes serious infections in humans all over the world. After being inoculated into the skin through the bite of an infected sandfly, Leishmania promastigotes must gain entry into macrophages to initiate a successful infection. Specific, surface exposed phospholipids have been implicated in Leishmania-macrophage interaction but the mechanisms controlling and regulating the plasma membrane lipid distribution remains to be elucidated. Here, we provide evidence for Ca(2+)-induced phospholipid scrambling in the plasma membrane of Leishmania donovani. Stimulation of parasites with ionomycin increases intracellular Ca(2+) levels and triggers exposure of phosphatidylethanolamine at the cell surface. We found that increasing intracellular Ca(2+) levels with ionomycin or thapsigargin induces rapid transbilayer movement of NBD-labelled phospholipids in the parasite plasma membrane that is bidirectional, independent of cellular ATP and not specific to the polar lipid head group. The findings suggest the presence of a Ca(2+)-dependent lipid scramblase activity in Leishmania parasites. Our studies further show that lipid scrambling is not activated by rapid exposure of promastigotes to higher physiological temperature that increases intracellular Ca(2+) levels. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crustacean color change results from the differential translocation of chromatophore pigments, regulated by neurosecretory peptides like red pigment concentrating hormone (RPCH) that, in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi, triggers pigment aggregation via increased cytosolic cGMP and Ca(2+) of both smooth endoplasmatic reticulum (SER) and extracellular origin. However, Ca(2+) movements during RPCH signaling and the mechanisms that regulate intracellular [Ca(2+)] are enigmatic. We investigate Ca(2+) transporters in the chromatophore plasma membrane and Ca(2+) movements that occur during RPCH signal transduction. Inhibition of the plasma membrane Ca(2+)-ATPase by La(3+) and indirect inhibition of the Na(+)/Ca(2+) exchanger by ouabain induce pigment aggregation, revealing a role for both in Ca(2+) extrusion. Ca(2+) channel blockade by La(3+) or Cd(2+) strongly inhibits slow-phase RPCH-triggered aggregation during which pigments disperse spontaneously. L-type Ca(2+) channel blockade by gabapentin markedly reduces rapid-phase translocation velocity; N- or P/Q-type blockade by omega-conotoxin MVIIC strongly inhibits RPCH-triggered aggregation and reduces velocity, effects revealing RPCH-signaled influx of extracellular Ca(2+). Plasma membrane depolarization, induced by increasing external K(+) from 5 to 50 mM, produces Ca(2+)-dependent pigment aggregation, whereas removal of K(+) from the perfusate causes pigment hyperdispersion, disclosing a clear correlation between membrane depolarization and pigment aggregation; K(+) channel blockade by Ba(2+) also partially inhibits RPCH action. We suggest that, during RPCH signal transduction, Ca(2+) released from the SER, together with K(+) channel closure, causes chromatophore membrane depolarization, leading to the opening of predominantly N- and/or P/Q-type voltage-gated Ca(2+) channels, and a Ca(2+)/cGMP cascade, resulting in pigment aggregation. J. Exp. Zool. 313A:605-617, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simple, rapid and stable sperm evaluation methods which have been optimized for common marmoset (Callithrix jacchus) are critical for studies involving collection and evaluation of sperm in the field. This is particularly important for new species groups such as Callitrichidae where the sperm have been little studied. Of this family, C jacchus is the best known, and has been chosen as a model species for other members of the genus Callithrix. The fundamental evaluation parameters for sperm of any species are viability and acrosomal status. Semen samples were collected by penile vibratory stimulation. To evaluate sperm plasma membrane integrity, Eosin-Nigrosin was tested here for the common marmoset sperm to be used under field conditions. Further, a non-fluorescent stain for acrosome, the ""Simple"" stain, developed for domestic and wild cats, was tested on common marmoset sperm. This was compared with a fluorescent staining, Fluorescein isothiocyanate-Pisum sativum agglutinin (FITC-PSA), routinely used and validated for common marmoset at the German Primate Centre to evaluate acrosomal integrity. Results obtained with the ""Simple"" stain showed a marked differentiation between sperm with intact and non-intact acrosome both with and without ionophore treatment and closely correlated with results obtained with FITC-PSA. Temperature had no effect on the results with the ""Simple"" stain and the complete processing is simple enough to be carried out under field conditions. These findings indicated that the ""Simple"" stain and Eosin-Nigrosin provide rapid and accurate results for C. jacchus sperm and that those methods can be reliably used as field tools for sperm evaluation for this species. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored. Basal SNA was threefold higher in SHR (P < 0.001 vs. WKY), and diabetes decreased this activity (similar to 50%, P < 0.05) in both WKY and SHR. The catalytic subunit of PKA and the plasma membrane SGLT1 content in acinar cells were regulated in parallel to the SNA. Electrical stimulation of the sympathetic branch to salivary glands increased (similar to 30%, P < 0.05) PKA and SGLT1 expression. Immunohistochemical analysis confirmed the observed regulations of SGLT1, revealing its location in basolateral membrane of acinar cells. Taken together, our results show highly coordinated regulation of sympathetic activity upon PKA activity and plasma membrane SGLT1 content in salivary glands. Furthermore, the present findings show that diabetic- and/or hypertensive-induced changes in the sympathetic activity correlate with changes in SGLT1 expression in basolateral membrane of acinar cells, which can participate in the salivary glands dysfunctions reported by patients with these pathologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gangliosides are complex glycosphingolipids that are important in many biological processes. The present study investigated the role of gangliosides in the organization of lipid rafts in RBL-2H3 mast cells and in the modulation of mast cell degranulation via Fc epsilon RI. The role of gangliosides was examined using two ganglioside deficient cell lines (B6A4A2III-E5 and B6A4C1III-D1) as well as the parent cell line (RBL-2H3). All three cell lines examined express Fc epsilon RI, Lyn, Syk and LAT. However, only in RBL-2H3 cells were Fc epsilon RI, LAT and alpha-galactosyl derivatives of ganglioside GD(1b) mobilized to lipid raft domains following Fc epsilon RI stimulation. The inhibition of glycosphingolipid synthesis in RBL-2H3 cells also resulted in a decrease in the release of beta-hexosaminidase activity after Fc epsilon RI activation. The two mutant cell lines have a reduced release of beta-hexosaminidase activity after Fc epsilon RI stimulation, but not after exposure to calcium ionophore. These results indicate that the alpha-galactosyl derivatives of ganglioside GD(1b) are important in the initial events of Fc epsilon RI signaling upstream of Ca(2+) influx. Since the initial signaling events occur in lipid rafts and in the mutant cell lines the rafts are disorganized, these results also suggest that these gangliosides contribute to the correct assembly of lipid rafts and are essential for mast cell activation via Fc epsilon RI. (c) 2008 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gangliosides are known to be important in many biological processes. However, details concerning the exact function of these glycosphingolipids in cell physiology are poorly understood. in this study, the role of gangliosides present on the surface of rodent mast cells in maintaining cell structure was examined using RBL-2H3 mast cells and two mutant cell lines (E5 and D1) deficient in the gangliosides, GM(1) and the alpha-galactosyl derivatives of the ganglioside GD(1b). The two deficient cell lines were morphologically different from each other as well as from the parental RBL-2H3 cells. Actin filaments in RBL-2H3 and E5 cells were under the plasma membrane following the spindle shape of the cells, whereas in D1 cells, they were concentrated in large membrane ruffles. Microtubules in RBL-2H3 and E5 cells radiated from the centrosome and were organized into long, straight bundles. The bundles in D1 cells were thicker and organized circumferentially under the plasma membrane. The endoplasmic reticulum, the Golgi complex, and the secretory granule matrix were also altered in the mutant cell lines. These results suggest that the mast cell-specific alpha-galactosyl derivatives of ganglioside GD(1b) and GM(1) are important in maintaining normal cell morphology. (J Histochern Cytochem 58:83-93, 2010)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vacuolar H+-ATPase is a large multi-subunit protein that mediates ATP-driven vectorial H+ transport across the membranes. It is widely distributed and present in virtually all eukaryotic cells in intracellular membranes or in the plasma membrane of specialized cells. In subcellular organelles, ATPase is responsible for the acidification of the vesicular interior, which requires an intraorganellar acidic pH to maintain optimal enzyme activity. Control of vacuolar H+-ATPase depends on the potential difference across the membrane in which the proton ATPase is inserted. Since the transport performed by H+-ATPase is electrogenic, translocation of H+-ions across the membranes by the pump creates a lumen-positive voltage in the absence of a neutralizing current, generating an electrochemical potential gradient that limits the activity of H+-ATPase. In many intracellular organelles and cell plasma membranes, this potential difference established by the ATPase gradient is normally dissipated by a parallel and passive Cl- movement, which provides an electric shunt compensating for the positive charge transferred by the pump. The underlying mechanisms for the differences in the requirement for chloride by different tissues have not yet been adequately identified, and there is still some controversy as to the molecular identity of the associated Cl--conducting proteins. Several candidates have been identified: the ClC family members, which may or may not mediate nCl-/H+ exchange, and the cystic fibrosis transmembrane conductance regulator. In this review, we discuss some tissues where the association between H+-ATPase and chloride channels has been demonstrated and plays a relevant physiologic role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: A family of hydrophilic acylated surface (HASP) proteins, containing extensive and variant amino acid repeats, is expressed at the plasma membrane in infective extracellular (metacyclic) and intracellular (amastigote) stages of Old World Leishmania species. While HASPs are antigenic in the host and can induce protective immune responses, the biological functions of these Leishmania-specific proteins remain unresolved. Previous genome analysis has suggested that parasites of the sub-genus Leishmania (Viannia) have lost HASP genes from their genomes. Methods/Principal Findings: We have used molecular and cellular methods to analyse HASP expression in New World Leishmania mexicana complex species and show that, unlike in L. major, these proteins are expressed predominantly following differentiation into amastigotes within macrophages. Further genome analysis has revealed that the L. (Viannia) species, L. (V.) braziliensis, does express HASP-like proteins of low amino acid similarity but with similar biochemical characteristics, from genes present on a region of chromosome 23 that is syntenic with the HASP/SHERP locus in Old World Leishmania species and the L. (L.) mexicana complex. A related gene is also present in Leptomonas seymouri and this may represent the ancestral copy of these Leishmania-genus specific sequences. The L. braziliensis HASP-like proteins (named the orthologous (o) HASPs) are predominantly expressed on the plasma membrane in amastigotes and are recognised by immune sera taken from 4 out of 6 leishmaniasis patients tested in an endemic region of Brazil. Analysis of the repetitive domains of the oHASPs has shown considerable genetic variation in parasite isolates taken from the same patients, suggesting that antigenic change may play a role in immune recognition of this protein family. Conclusions/Significance: These findings confirm that antigenic hydrophilic acylated proteins are expressed from genes in the same chromosomal region in species across the genus Leishmania. These proteins are surface-exposed on amastigotes (although L. (L.) major parasites also express HASPB on the metacyclic plasma membrane). The central repetitive domains of the HASPs are highly variant in their amino acid sequences, both within and between species, consistent with a role in immune recognition in the host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combination of metallic phthalocyanines (MPcs) and biomolecules has been explored in the literature either as mimetic systems to investigate molecular interactions or as supporting layers to immobilize biomolecules. Here, Langmuir-Blodgett (LB) films containing the phospholipid dimyristoyl phosphatidic acid (DMPA) mixed either with iron phthalocyanine (FePc) or with lutetium bisphthalocyanine (LuPc(2)) were applied as ITO modified-electrodes in the detection of catechol using cyclic voltammetry. The mixed Langmuir films of FePc + DMPA and LuPc(2) + DMPA displayed surface-pressure isotherms with no evidence of molecular-level interactions. The Fourier Transform Infrared (FTIR) spectra of the multilayer LB films confirmed the lack of interaction between the components. The DMPA and the FePc molecules were found to be oriented perpendicularly to the substrate, while LuPc(2) molecules were randomly organized. The phospholipid matrix induced a remarkable electrocatalytic effect on the phthalocyanines; as a result the mixed LB films deposited on ITO could be used to detect catechol with detection limits of 4.30 x 10(-7) and 3.34 x 10(-7) M for FePc + DMPA and LuPc(2) + DMPA, respectively. Results from kinetics experiments revealed that ion diffusion dominated the response of the modified electrodes. The sensitivity was comparable to that of other non-enzymatic sensors, which is sufficient to detect catechol in the food industry. The higher stability of the electrochemical response of the LB films and the ability to control the molecular architecture are promising for further studies with incorporation of biomolecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings: We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance: Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimicrobial photodynamic treatment (PDT) is a promising method that can be used to control localized mycoses or kill fungi in the environment. A major objective of the current study was to compare the conidial photosensitization of two fungal species (Metarhizium anisopliae and Aspergillus nidulans) with methylene blue (MB) and toluidine blue (TBO) under different incubation and light conditions. Parameters examined were media, photosensitizer (PS) concentration and light source. PDT with MB and TBO resulted in an incomplete inactivation of the conidia of both fungal species. Conidial inactivation reached up to 99.7%, but none of the treatments was sufficient to achieve a 100% fungicidal effect using either MB or TBO. PDT delayed the germination of the surviving conidia. Washing the conidia to remove unbound PS before light exposure drastically reduced the photosensitization of A. nidulans. The reduction was much smaller in M. anisopliae conidia, indicating that the conidia of the two species interact differently with MB and TBO. Conidia of green and yellow M. anisopliae mutants were less affected by PDT than mutants with white and violet conidia. In contrast to what occurred in PBS, photosensitization of M. anisopliae and A. nidulans conidia was not observed when PDT was performed in potato dextrose media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diadromous freshwater shrimps are exposed to brackish water both as an obligatory part of their larval life cycle and during adult reproductive migration; their well-developed osmoregulatory ability is crucial to survival in such habitats. This study examines gill microsomal Na,K-ATPase (K-phosphatase activity) kinetics and protein profiles in the freshwater shrimp Macrobrachium amazonicum when in fresh water and after 10-days of acclimation to brackish water (21 parts per thousand salinity), as well as potential routes of Na(+) uptake across the gill epithelium in fresh water. On acclimation, K-phosphatase activity decreases 2.5-fold, Na,K-ATPase alpha-subunit expression declines, total protein expression pattern is markedly altered, and enzyme activity becomes redistributed into different density membrane fractions, possibly reflecting altered vesicle trafficking between the plasma membrane and intracellular compartments. Ultrastructural analysis reveals an intimately coupled pillar cell-septal cell architecture and shows that the cell membrane interfaces between the external medium and the hemolymph are greatly augmented by apical pillar cell evaginations and septal cell inviginations, respectively. These findings ire discussed regarding the putative movement of Na(+) across the pillar cell interfaces and into the hemolymph via the septal cells, powered by the Na,K-ATPase located in their invaginations. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue-nonspecific alkaline phosphatase (TNAP), present on the surface of chondrocyte- and osteoblast-derived matrix vesicles (MVs), plays key enzymatic functions during endochondral ossification. Many studies have shown that MVs are enriched in TNAP and also in cholesterol compared to the plasma membrane. Here we have studied the influence of cholesterol on the reconstitution of TNAP into dipalmitoylphosphatidylcholine (DPPC)-liposomes, monitoring the changes in lipid critical transition temperature (T(c)) and enthalpy variation (Delta H) using differential scanning calorimetry (DSC). DPPC-liposomes revealed a T(c) of 41.5 degrees C and Delta H of 7.63 Kcal mol(-1). The gradual increase in cholesterol concentration decrease Delta H values, reaching a Delta H of 0.87 Kcal mol(-1) for DPPC: cholesterol system with 36 mol% of cholesterol. An increase in T(c), up to 47 degrees C for the DPPC:cholesterol liposomes (36 mol% of Chol), resulted from the increase in the area per molecule in the gel phase. TNAP (0.02 mg/mL) reconstitution was done with protein:lipid 1:10,000 (molar ratio), resulting in 85% of the added enzyme being incorporated. The presence of cholesterol reduced the incorporation of TNAP to 42% of the added enzyme when a lipid composition of 36 mol% of Chol was used. Furthermore, the presence of TNAP in proteoliposomes resulted in a reduction in Delta H. The gradual proportional increase of cholesterol in liposomes results in broadening of the phase transition peak and eventually eliminates the cooperative gel-to-liquid-crystalline phase transition of phospholipids bilayers. Thus, the formation of microdomains may facilitate the clustering of enzymes and transporters known to be functional in MVs during endochondral ossification. (C) 2010 Elsevier B.V. All rights reserved.