2 resultados para plant architecture

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bourguyia hamata females oviposit almost exclusively inside the rosette formed by the curled leaves of the epiphytic bromeliad Aechmea nudicaulis. We investigated whether the architecture of the individual bromeliads influences oviposition site selection by this harvestman species. We collected data on the presence of clutches inside bromeliads, rosette length, rosette slope in relation to tree trunks, and the amount of debris inside the rosette. Additionally, we measured the water volume inside the rosettes as well as the variation in the humidity inside and outside bromeliads with long and short rosettes. Longer rosettes were preferred as oviposition site possibly because they accumulate more water and maintain lower internal humidity variation than the external environment. Although the slope of the rosettes did not influence the occurrence of oviposition, the probability of debris accumulation inside the rosettes increased with their slope, and the frequency of clutches was greater in bromeliads with small amounts of debris. A field experiment showed that bromeliads with water inside the rosette were more frequently used as oviposition sites than bromeliads without water. In conclusion, females oviposit predominantly in bromeliads that accumulate more water and have small amounts of debris inside the rosettes, probably because these characteristics promote a more adequate microhabitat for egg development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Actinocephalus exhibits perhaps more diversity in habit than any other genus of Eriocaulaceae. This variation is largely a result of differences in the arrangement of the paraclades. Based on the analysis of stem architecture of all 25 species of Actinocephalus, the following patterns were established: (1) leaf rosette, with no elongated axis, instead the axillary paraclades originating directly from the short aerial stem, (2) rosette axis continuing into an elongated axis with spirally arranged paraclades, (3) an elongated axis originating from a rhizome, with ramified paraclades, and (4) an elongated axis originating from a short aerial stem, with paraclades arranged in a subwhorl. The elongated axis exhibits indeterminate growth only in pattern 4. Patterns 3 and 4 are found exclusively in Actinocephalus; pattern I occurs in many other genera of Eriocaulaceae, while pattern 2 is also found in Syngonanthus and Paepalanthus. Anatomically, each stem structure (i.e., paraclade, elongated axis, short aerial stem, rhizome) is thickened in a distinctive way and this can be used to distinguish them. Specifically, elongated axes and paraclades lack thickening, thickening of short aerial stems results from the primary thickening meristem and/or the secondary thickening meristem. Thickening of rhizomes results from the activity of the primary thickening meristem. (c) 2008 Elsevier GmbH. All rights reserved.