30 resultados para planetary ball mill
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
It has been demonstrated that laser induced breakdown spectrometry (LIBS) can be used as an alternative method for the determination of macro (P, K. Ca, Mg) and micronutrients (B, Fe, Cu, Mn, Zn) in pellets of plant materials. However, information is required regarding the sample preparation for plant analysis by LIBS. In this work, methods involving cryogenic grinding and planetary ball milling were evaluated for leaves comminution before pellets preparation. The particle sizes were associated to chemical sample properties such as fiber and cellulose contents, as well as to pellets porosity and density. The pellets were ablated at 30 different sites by applying 25 laser pulses per site (Nd:YAG@1064 nm, 5 ns, 10 Hz, 25J cm(-2)). The plasma emission collected by lenses was directed through an optical fiber towards a high resolution echelle spectrometer equipped with an ICCD. Delay time and integration time gate were fixed at 2.0 and 4.5 mu s, respectively. Experiments carried out with pellets of sugarcane, orange tree and soy leaves showed a significant effect of the plant species for choosing the most appropriate grinding conditions. By using ball milling with agate materials, 20 min grinding for orange tree and soy, and 60 min for sugarcane leaves led to particle size distributions generally lower than 75 mu m. Cryogenic grinding yielded similar particle size distributions after 10 min for orange tree, 20 min for soy and 30 min for sugarcane leaves. There was up to 50% emission signal enhancement on LIBS measurements for most elements by improving particle size distribution and consequently the pellet porosity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Using the previously described method for appearance function determination, described in Part I of this article, the breakage characterization of the main Carajas ore types was carried out. Based on such characteristics, the ball mill circuit performance was evaluated through simulations. The model described in the first part was used. The results were assessed by comparing ball mill products and cyclone overflow size distribution, as well as simulated recirculating loads. The simulations indicated the potential for processing such ore types at the Carajas grinding circuit, which until now was unknown.
Resumo:
MgB(2) is considered to be an important conductor for applications. Optimizing flux pinning in these conductors can improve their critical currents. Doping can influence flux pinning efficiency and grain connectivity, and also affect the resistivity, upper critical field and critical temperature. This study was designed to attempt the doping of MgB(2) on the Mg sites with metal-diborides using high-energy ball milling. MgB(2) samples were prepared by milling pre-reacted MgB(2) and TaB(2) powders using a Spex 8000M mill with WC jars and balls in a nitrogen-filled glove box. The mixing concentration in (Mg(1-x)Ta(x))B(2) was up to x = 0.10. Samples were removed from the WC jars after milling times up to 4000 minutes and formed into pellets using cold isostatic pressing. The pellets were heat treated in a hot isostatic press (HIP) at 1000 degrees C under a pressure of 30 kpsi for 24 hours. The influence that milling time and TaB(2) addition had on the microstructure and the resulting superconducting properties of TaB(2)-added MgB(2) is discussed. Improvement J(c) of at high magnetic fields and of pinning could be obtained in milled samples with added TaB(2) The sample with added 5at.% TaB(2) and milled for 300 minutes showed values of J(c) similar to 7 x 10(5) A/cm(2) and F(p) similar to 14 GN/m(3) at 2T, 4.2 K. The milled and TaB(2)-mixed samples showed higher values of mu(0)H(irr) than the unmilled-unmixed sample.
Resumo:
Three welding procedures used to rebuild worn shafts in sugar cane mills were analysed: two submerged arc welding processes and one flux cored arc welding (FCAW) process. Sliding wear tests were in accordance with ASTM G 77 standard, using rings of welding material, blocks of bronze SAE 67, and oil as lubricant. The worn surfaces of rings and blocks were analysed by scanning electron microscopy to determine the wear mechanisms. High contact pressure, high operating temperature, and low relative speed were applied in sliding wear tests to match the conditions in sugar cane mills. Transferred material and evidence of adhesive junctions were detected. Additionally, hardened fragments produced abrasive grooves on the worn surfaces. The welding deposits that presented strong adhesion on the worn surface showed higher mass loss than the materials that presented more abrasive characteristics. Plastic mechanical properties were measured and related to the mass loss. The tested materials presented similar hardness but different yield stress and hardening coefficient. A relationship between wear, strain hardening coefficient, and yield stress was found. The welding deposit that presented the highest hardening coefficient showed the highest mass loss, with evidence of severe adhesion on the worn surface.
Resumo:
Context. Our understanding of the chemical evolution (CE) of the Galactic bulge requires the determination of abundances in large samples of giant stars and planetary nebulae (PNe). Studies based on high resolution spectroscopy of giant stars in several fields of the Galactic bulge obtained with very large telescopes have allowed important progress. Aims. We discuss PNe abundances in the Galactic bulge and compare these results with those presented in the literature for giant stars. Methods. We present the largest, high-quality data-set available for PNe in the direction of the Galactic bulge (inner-disk/bulge). For comparison purposes, we also consider a sample of PNe in the Large Magellanic Cloud (LMC). We derive the element abundances in a consistent way for all the PNe studied. By comparing the abundances for the bulge, inner-disk, and LMC, we identify elements that have not been modified during the evolution of the PN progenitor and can be used to trace the bulge chemical enrichment history. We then compare the PN abundances with abundances of bulge field giant. Results. At the metallicity of the bulge, we find that the abundances of O and Ne are close to the values for the interstellar medium at the time of the PN progenitor formation, and hence these elements can be used as tracers of the bulge CE, in the same way as S and Ar, which are not expected to be affected by nucleosynthetic processes during the evolution of the PN progenitors. The PN oxygen abundance distribution is shifted to lower values by 0.3 dex with respect to the distribution given by giants. A similar shift appears to occur for Ne and S. We discuss possible reasons for this PNe-giant discrepancy and conclude that this is probably due to systematic errors in the abundance derivations in either giants or PNe (or both). We issue an important warning concerning the use of absolute abundances in CE studies.
Resumo:
Context. The analysis and interpretation of the H(2) line emission from planetary nebulae have been done in the literature by assuming that the molecule survives only in regions where the hydrogen is neutral, as in photodissociation, neutral clumps, or shocked regions. However, there is strong observational and theoretical evidence that at least part of the H(2) emission is produced inside the ionized region of these objects. Aims. The aim of the present work is to calculate and analyze the infrared line emission of H(2) produced inside the ionized region of planetary nebulae using a one-dimensional photoionization code. Methods. The photoionization code Aangaba was improved in order to calculate the statistical population of the H(2) energy levels, as well as the intensity of the H(2) infrared emission lines in the physical conditions typical of planetary nebulae. A grid of models was obtained and the results then analyzed and compared with the observational data. Results. We show that the contribution of the ionized region to the H(2) line emission can be important, particularly in the case of nebulae with high-temperature central stars. This result explains why H(2) emission is more frequently observed in bipolar planetary nebulae (Gatley's rule), since this kind of object typically has hotter stars. Collisional excitation plays an important role in populating the rovibrational levels of the electronic ground state of H(2) molecules. Radiative mechanisms are also important, particularly for the upper vibrational levels. Formation pumping can have minor effects on the line intensities produced by de-excitation from very high rotational levels, especially in dense and dusty environments. We included the effect of the H(2) molecule on the thermal equilibrium of the gas, concluding that, in the ionized region, H(2) only contributes to the thermal equilibrium in the case of a very high temperature of the central star or a high dust-to-gas ratio, mainly through collisional de-excitation.
Resumo:
Context. Determination of the ages of central stars of planetary nebulae (CSPN) is a complex problem, and there is presently no single method that can be generally applied. We have developed several methods of estimating the ages of CSPN, based on both the observed nebular properties and some properties of the stars themselves. Aims. Our aim is to estimate the ages and the age distribution of CSPN and to compare the derived results with mass and age determinations of CSPN and white dwarfs based on empirical determinations of these quantities. Methods. We considered a sample of planetary nebulae in the galactic disk, most of which (similar to 69%) are located in the solar neighbourhood, within 3 kpc from the Sun. We discuss several methods of deriving the age distribution of CSPN, namely; (i) the use of an age-metallicity relation that also depends on the galactocentric distance; (ii) the use of an age-metallicity relation obtained for the galactic disk; and (iii) the determination of ages from the central star masses obtained from the observed nitrogen abundances. Results. We estimated the age distribution of CSPN with average uncertainties of 1-2 Gyr, and compared our results with the expected distribution based both on the observed mass distribution of white dwarfs and on the age distribution derived from available mass distributions of CSPN. Based on our derived age distributions, we conclude that most CSPN in the galactic disk have ages under 6 Gyr, and that the age distribution is peaked around 2-4 Gyr.
Resumo:
We report on an intensive observational campaign carried out with HARPS at the 3.6 m telescope at La Silla on the star CoRoT-7. Additional simultaneous photometric measurements carried out with the Euler Swiss telescope have demonstrated that the observed radial velocity variations are dominated by rotational modulation from cool spots on the stellar surface. Several approaches were used to extract the radial velocity signal of the planet(s) from the stellar activity signal. First, a simple pre-whitening procedure was employed to find and subsequently remove periodic signals from the complex frequency structure of the radial velocity data. The dominant frequency in the power spectrum was found at 23 days, which corresponds to the rotation period of CoRoT-7. The 0.8535 day period of CoRoT-7b planetary candidate was detected with an amplitude of 3.3 m s(-1). Most other frequencies, some with amplitudes larger than the CoRoT-7b signal, are most likely associated with activity. A second approach used harmonic decomposition of the rotational period and up to the first three harmonics to filter out the activity signal from radial velocity variations caused by orbiting planets. After correcting the radial velocity data for activity, two periodic signals are detected: the CoRoT-7b transit period and a second one with a period of 3.69 days and an amplitude of 4 m s(-1). This second signal was also found in the pre-whitening analysis. We attribute the second signal to a second, more remote planet CoRoT-7c. The orbital solution of both planets is compatible with circular orbits. The mass of CoRoT-7b is 4.8 +/- 0.8 (M(circle plus)) and that of CoRoT-7c is 8.4 +/- 0.9 (M(circle plus)), assuming both planets are on coplanar orbits. We also investigated the false positive scenario of a blend by a faint stellar binary, and this may be rejected by the stability of the bisector on a nightly scale. According to their masses both planets belong to the super-Earth planet category. The average density of CoRoT-7b is rho = 5.6 +/- 1.3 g cm(-3), similar to the Earth. The CoRoT-7 planetary system provides us with the first insight into the physical nature of short period super-Earth planets recently detected by radial velocity surveys. These planets may be denser than Neptune and therefore likely made of rocks like the Earth, or a mix of water ice and rocks.
Resumo:
Context. CoRoT is a pioneering space mission devoted to the analysis of stellar variability and the photometric detection of extrasolar planets. Aims. We present the list of planetary transit candidates detected in the first field observed by CoRoT, IRa01, the initial run toward the Galactic anticenter, which lasted for 60 days. Methods. We analysed 3898 sources in the coloured bands and 5974 in the monochromatic band. Instrumental noise and stellar variability were taken into account using detrending tools before applying various transit search algorithms. Results. Fifty sources were classified as planetary transit candidates and the most reliable 40 detections were declared targets for follow-up ground-based observations. Two of these targets have so far been confirmed as planets, CoRoT-1b and CoRoT-4b, for which a complete characterization and specific studies were performed.
Resumo:
Continuing our series of papers on the three-dimensional (3D) structure and accurate distances of planetary nebulae (PNe), we present here the results obtained for PN NGC 40. Using data from different sources and wavelengths, we construct 3D photoionization models and derive the physical quantities of the ionizing source and nebular gas. The procedure, discussed in detail in the previous papers, consists of the use of 3D photoionization codes constrained by observational data to derive the 3D nebular structure, physical and chemical characteristics, and ionizing star parameters of the objects by simultaneously fitting the integrated line intensities, the density map, the temperature map, and the observed morphologies in different emission lines. For this particular case we combined hydrodynamical simulations with the photoionization scheme in order to obtain self-consistent distributions of density and velocity of the nebular material. Combining the velocity field with the emission-line cubes we also obtained the synthetic position-velocity plots that are compared to the observations. Finally, using theoretical evolutionary tracks of intermediate-and low-mass stars, we derive the mass and age of the central star of NGC 40 as (0.567 +/- 0.06) M(circle dot) and (5810 +/- 600) yr, respectively. The distance obtained from the fitting procedure was (1150 +/- 120) pc.
Resumo:
The release of xylose reductase (XR) from Candida mogii by cell disruption in a glass beads mill was studied using an experimental design. Statistical analysis of the results indicated that XR volumetric activity increases by using lower glass beads diameter and cell concentration, and by increasing the number of agitation pulses. Based on results attained in experimental design, assays were carried out aiming at the maximization of XR release. Under optimized conditions (300 mu m glass beads, 45 g/l of cell concentration and 50 pulses), the XR volumetric activity reach 0.683 U/ml. Disruption with glass beads showed to be the most efficient method for XR release when compared to sonication process. The highest specific activity (0.175 U/mg of protein) was found in extracts obtained by suspension freezing and thawing, which suggests that this method can be used as a selective process of cell disruption for XR release. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The development of Nb(3)Al and Nb(3)Sn superconductors is of great interest for the applied superconductivity area. These intermetallics composites are obtained normally by heat treatment reactions at high temperature. Processes that allow formation of the superconducting phases at lower temperatures (<1000 degrees C), particularly for Nb(3)Al, are of great interest. The present work studies phase formation and stability of Nb(3)Al and Nb(3)Sn superconducting phases using mechanical alloying (high energy ball milling). Our main objective was to form composites near stoichiometry, which could be transformed into the superconducting phases using low-temperature heat treatments. High purity Nb-Sn and Nb-Al powders were mixed to generate the required superconducting phases (Nb-25at.%Sn and Nb-25at.%Al) in an argon atmosphere glove-box. After milling in a Fritsch mill, the samples were compressed in a hydraulic uniaxial press and encapsulated in evacuated quartz tubes for heat treatment. The compressed and heat treated samples were characterized using X-ray diffractometry. Microstructure and chemical analysis were accomplished using scanning electron microscopy and energy dispersive spectrometry. Nb(3)Al XRD peaks were observed after the sintering at 800 degrees C for the sample milled for 30 h. Nb(3)Sn XRD peaks could be observed even before the heat treatment. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Biopulping of Eucalyptus grandis wood chips with Phanerochaete chrysosporium RP-78 was evaluated under non-aseptic conditions in laboratory and mill wood-yard. The ability of P. chrysosporium to compete with indigenous fungi present in fresh wood chips was notorious under controlled laboratory experiments. A subsequent step involved an industrial test performed with 10-ton of fresh wood chips inoculated and maintained at 37 +/- 38 degrees C for 39 days in a biopulping pilot plant. Biotreated wood chips were pulped in a chemithermomechanical pulping mill. Net energy consumption during refining was 745 kWh ton(-1) and 610 kWh ton(-1) of processed pulp for control and biotreated wood chips, respectively. Accordingly, 18.5% net energy saving could be achieved. Biopulps contained lower shive content and had improved strength properties compared to control pulps. Tensile index improved from 25 +/- 1 N m g(-1) to 33.6 +/- 0.5 N m g(-1) and delamination strength from 217 +/- 19 kPa to 295 +/- 30 kPa.
Resumo:
In this work, the synthesis of Y(2)O(3) stabilized tetragonal zirconia polycrystals (Y-TZP)-alumina (Al(2)O(3)) powder mixture was performed by high-energy ball milling and the sintering behavior of this composite was investigated. In order to understand the phase transformations occurring during ball milling, samples were collected after different milling times, from 1 to 60 h. The milled powders were compacted by cold uniaxial pressing and sintered at 1400 and 1600 degrees C. Both powders and sintered samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry analysis (EDS) and mechanical properties. Fully dense samples were obtained after sintering at 1600 degrees C, while the samples sintered at 1400 degrees C presented a full density for powder mixtures milled for 30 and 60 h. Fracture toughness and Vickers hardnessvalues of the Y-T-ZP/Al(2)O(3) nanocomposite were improved due to dispersed Al(2)O(3) grains and reduced ZrO(2) grain size. Samples sintered at 1400 degrees C, based on powders milled for 60 h, presented high K(IC) and hardness values near to 8.0 Mpan(1/2) and 15 GPa, respectively (C) 2008 Elsevier B.V. All rights reserved
Resumo:
The micro-scale abrasive wear test by rotative ball has gained large acceptance in universities and research centers, being widely used in studies on the abrasive wear of materials. Two wear modes are usually observed in this type of test: ""rolling abrasion"" results when the abrasive particles roll on the surface of the tested specimen, while ""grooving abrasion"" is observed when the abrasive particles slide; the type of wear mode has a significant effect on the overall behaviour of a tribological system. Several works on the friction coefficient during abrasive wear tests are available in the literature, but only a few were dedicated to the friction coefficient in micro-abrasive wear tests conducted with rotating ball. Additionally, recent works have identified that results may also be affected by the change in contact pressure that occurs when tests are conducted with constant applied force. Thus, the purpose of this work is to study the relationship between friction coefficient and abrasive wear modes in ball-cratering wear tests conducted at ""constant normal force"" and ""constant pressure"". Micro-scale abrasive wear tests were conducted with a ball of AISI52100 steel and a specimen of AISIH10 tool steel. The abrasive slurry was prepared with black silicon carbide (SiC) particles (average particle size of 3 mu m) and distilled water. Two constant normal force values and two constant pressure values were selected for the tests. The tangential and normal loads were monitored throughout the tests and their ratio was calculated to provide an indication of the friction coefficient. In all cases, optical microscopy analysis of the worn craters revelated only the presence of grooving abrasion. However, a more detailed analysis conducted by SEM has indicated that different degrees of rolling abrasion have also occurred along the grooves. The results have also shown that: (i) for the selected values of constant normal force and constant pressure, the friction coefficient presents, approximately, the same range of values and (ii) loading conditions play an important role on the occurrence of rolling abrasion or grooving abrasion and, consequently, on the average value and scatter of the friction coefficient in micro-abrasive wear tests. (C) 2009 Elsevier B.V. All rights reserved.