9 resultados para physiological constraint

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An organism is built through a series of contingent factors, yet it is determined by historical, physical, and developmental constraints. A constraint should not be understood as an absolute obstacle to evolution, as it may also generate new possibilities for evolutionary change. Modularity is, in this context, an important way of organizing biological information and has been recognized as a central concept in evolutionary biology bridging on developmental, genetics, morphological, biochemical, and physiological studies. In this article, we explore how modularity affects the evolution of a complex system in two mammalian lineages by analyzing correlation, variance/covariance, and residual matrices (without size variation). We use the multivariate response to selection equation to simulate the behavior of Eutheria and Metharia skulls in terms of their evolutionary flexibility and constraints. We relate these results to classical approaches based on morphological integration tests based on functional/developmental hypotheses. Eutherians (Neotropical primates) showed smaller magnitudes of integration compared with Metatheria (didelphids) and also skull modules more clearly delimited. Didelphids showed higher magnitudes of integration and their modularity is strongly influenced by within-groups size variation to a degree that evolutionary responses are basically aligned with size variation. Primates still have a good portion of the total variation based on size; however, their enhanced modularization allows a broader spectrum of responses, more similar to the selection gradients applied (enhanced flexibility). Without size variation, both groups become much more similar in terms of modularity patterns and magnitudes and, consequently, in their evolutionary flexibility. J. Exp. Zool. (Mol. Dev. Evol.) 314B:663-683, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that chlorogenic acids, the main phenolics in coffee, many fruits and Ilex paraguariensis extracts, protect paraoxonase 1 activity in HDL from inactivation by chlorination at concentrations of HOCl (50 mu M) and chlorogenic acid (2-10 mu M) compatible with those found in humans. When human HDL was incubated in the presence of HOCl/OCl-, a concentration dependent loss of activity was apparent. Of interest, 5 caffeoylquinic acid at 5 mu mol/L affords more than 60% protection of the activity reaching 100% at 25 mu mol/L. This compound and the plant sources that are rich in them may be protectors of paraoxonase 1 activity. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diverse invertebrate and vertebrate species live in association with plants of the large Neotropical family Bromeliaceae. Although previous studies have assumed that debris of associated organisms improves plant nutrition, so far little evidence supports this assumption. In this study we used isotopic ((15)N) and physiological methods to investigate if the treefrog Scinax hayii, which uses the tank epiphytic bromeliad Vriesea bituminosa as a diurnal shelter, contributes to host plant nutrition. In the field, bromeliads with frogs had higher stable N isotopic composition (delta(15)N) values than those without frogs. Similar results were obtained from a controlled greenhouse experiment. Linear mixing models showed that frog feces and dead termites used to simulate insects that eventually fall inside the bromeliad tank contributed, respectively, 27.7% (+/- 0.07 SE) and 49.6% (+/- 0.50 SE) of the total N of V. bituminosa. Net photosynthetic rate was higher in plants that received feces and termites than in controls; however, this effect was only detected in the rainy, but not in the dry season. These results demonstrate for the first time that vertebrates contribute to bromeliad nutrition, and that this benefit is seasonally restricted. Since amphibian-bromeliad associations occur in diverse habitats in South and Central America, this mechanism for deriving nutrients may be important in bromeliad systems throughout the Neotropics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effects of stocking density on the growth and fatty acid (FA) of Brycon insignis metabolism. Fingerlings (360) were distributed into eight ponds at two stocking densities (105 and 210 g/m(3)). The analysis of growth showed that the condition factor (K) and the coefficient of variation (CV) for body mass were not affected by stocking density. However, final body mass and length, specific growth rate (SGR), and weight gain (WG) were higher in the low stocking density group, which also presented a higher feed efficiency (FE) and survival (S). By contrast, muscle protein levels were higher in the high stocking density group. The plasma and muscle lipid content were not affected by stocking density, but fish reared at lower stocking density presented higher lipid concentration in the liver, with no differences in hepatosomatic index values. Even with the differences observed in metabolic and growth parameters, plasma cortisol was not affected by stocking density. The FA profile in the muscle and liver neutral fraction were not affected by stocking density, but the FA in the polar fractions differed between the two stocking densities. In the liver, total polyunsaturated fatty acids (PUFA) and PUFA n - 3 increased in higher stocking density, mainly due to an increase in docosahexaenoic acid (DHA). In addition, PUFA n - 6 were also increased in the higher stocking density group, mainly due to an increase in arachidonic acid (AA) and docosadienoic acid (22:2n - 6). In the muscle polar fraction, the saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) decreased in the animals from the higher stocking density group, and this reduction was compensated by an increase in PUFA n - 3 and PUFA n - 6, mainly the FA with 20-22 carbons (20:4n - 6: 22:4:n - 6; 22:5n - 6, 22:5n - 3, and 22:6n - 3). A different profile was observed for the C18 PUFAs, mainly 18:2n - 6 and 18:4n - 6, which were higher in the lower density stocking group. The data suggest that when living in high stocking density, B. insignis differentially utilizes the hepatic lipids as energy source and remodels the membrane fatty acids, with higher amounts of DHA in the polar muscle fraction compensated for by a decrease in MUFA. The zootechnical and physiological indices reveal that the lower stocking density group achieve overall better performance. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaves comprise most of the vegetative body of tank bromeliads and are usually subjected to strong longitudinal gradients. For instance, while the leaf base is in contact with the water accumulated in the tank, the more light-exposed middle and upper leaf sections have no direct access to this water reservoir. Therefore, the present study attempted to investigate whether different leaf portions of Guzmania monostachia, a tank-forming C(3)-CAM bromeliad, play distinct physiological roles in response to water shortage, which is a major abiotic constraint in the epiphytic habitat. Internal and external morphological features, relative water content, pigment composition and the degree of CAM expression were evaluated in basal, middle and apical leaf portions in order to allow the establishment of correlations between the structure and the functional importance of each leaf region. Results indicated that besides marked structural differences, a high level of functional specialization is also present along the leaves of this bromeliad. When the tank water was depleted, the abundant hydrenchyma of basal leaf portions was the main reservoir for maintaining a stable water status in the photosynthetic tissues of the apical region. In contrast, the CAM pathway was intensified specifically in the upper leaf section, which is in agreement with the presence of features more suitable for the occurrence of photosynthesis at this portion. Gas exchange data indicated that internal recycling of respiratory CO(2) accounted for virtually all nighttime acid accumulation, characterizing a typical CAM-idling pathway in the drought-exposed plants. Altogether, these data reveal a remarkable physiological complexity along the leaves of G. monostachia, which might be a key adaptation to the intermittent water supply of the epiphytic niche. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acanthamoeba spp., known to cause keratitis and granulomatous encephalitis in humans, are frequently isolated from a variety of water sources. Here we report for the first time the characterization of an Acanthamoeba sp. (ACC01) isolated from tap water in Brazil. This organism is currently being maintained in an axenic growth medium. Phylogenetic analysis based on SSU rRNA gene sequences positioned the new isolate in genotype T4, closest to the keratitis-causing isolate, A. polyphaga ATCC 30461 (similar to 99% similarity). Acanthamoeba ACC01 and A. polyphaga 30461 both grew at 37 degrees C and were osmotically resistant, multiplying in hyperosmolar medium. Both isolates secreted comparable amounts of proteolytic enzymes, including serine peptidases that were optimally active at a near neutral/alkaline pH and resolved identically in gelatin gels. Incubation of gels at pH 4.0 with 2 mM DTT also indicated the secretion of similar cysteine peptidases. Altogether, the results point to the pathogenic potential of Acanthamoeba ACC01. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two Augmented Lagrangian algorithms for solving KKT systems are introduced. The algorithms differ in the way in which penalty parameters are updated. Possibly infeasible accumulation points are characterized. It is proved that feasible limit points that satisfy the Constant Positive Linear Dependence constraint qualification are KKT solutions. Boundedness of the penalty parameters is proved under suitable assumptions. Numerical experiments are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite being one of the most important antioxidant defenses, Cu,Zn-superoxide dismutase (Sod1) has been frequently associated with harmful effects, including neurotoxicity. This toxicity has been attributed to immature forms of Sod1 and extraneous catalytic activities. Among these, the ability of Sod1 to function as a peroxidase may be particularly relevant because it is increased in bicarbonate buffer and produces the reactive carbonate radical. Despite many studies, how this radical forms remains unknown. To address this question, we systematically studied hSod1 peroxidase activity in the presence of nitrite, formate, and bicarbonate-carbon dioxide. Kinetic analyses of hydrogen peroxide consumption and of nitrite, formate, and bicarbonate-carbon dioxide oxidation showed that the Sod1-bound hydroxyl-like oxidant functions in the presence of nitrite and formate. In the presence of bicarbonate-carbon dioxide, this oxidant is replaced by peroxymonocarbonate, which is then reduced to the carbonate radical. Peroxymonocarbonate intermediacy was evidenced by (13)C NMR experiments showing line broadening of its peak in the presence of Zn,ZnSod1. In agreement, peroxymonocarbonate was docked into the hSod1 active site, where it interacted with the conserved Arg(143). Also, a reaction between peroxymonocarbonate and Cu(I)Sod1 was demonstrated by stopped-flow experiments. Kinetic simulations indicated that peroxymonocarbonate is produced during Sod1 turnover and not in bulk solution. In the presence of bicarbonate-carbon dioxide, sustained hSod1-mediated oxidations occurred with low steady-state concentrations of hydrogen peroxide (4-10 mu M). Thus, carbonate radical formation through peroxymonocarbonate may be a key event in Sod1-induced toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first naturally occurring angiotensin-converting enzyme (ACE) inhibitors described are pyroglutamyl proline-rich oligopeptides, found in the venom of the viper Bothrops jararaca, and named as bradykinin-potentiating peptides (BPPs). Biochemical and pharmacological properties of these peptides were essential for the development of Captopril, the first active site-directed inhibitor of ACE, currently used for the treatment of human hypertension. However, a number of data have suggested that the pharmacological activity of BPPs could not only be explained by their inhibitory action on enzymatic activity of somatic ACE. In fact, we showed recently that the strong and long-lasting anti-hypertensive effect of BPP-10c [