3 resultados para parasitic oscillation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The Madden-Julian oscillation (MJO) is the most prominent form of tropical intraseasonal variability. This study investigated the following questions. Do inter-annual-to-decadal variations in tropical sea surface temperature (SST) lead to substantial changes in MJO activity? Was there a change in the MJO in the 1970s? Can this change be associated to SST anomalies? What was the level of MJO activity in the pre-reanalysis era? These questions were investigated with a stochastic model of the MJO. Reanalysis data (1948-2008) were used to develop a nine-state first order Markov model capable to simulate the non-stationarity of the MJO. The model is driven by observed SST anomalies and a large ensemble of simulations was performed to infer the activity of the MJO in the instrumental period (1880-2008). The model is capable to reproduce the activity of the MJO during the reanalysis period. The simulations indicate that the MJO exhibited a regime of near normal activity in 1948-1972 (3.4 events year(-1)) and two regimes of high activity in 1973-1989 (3.9 events) and 1990-2008 (4.6 events). Stochastic simulations indicate decadal shifts with near normal levels in 1880-1895 (3.4 events), low activity in 1896 1917 (2.6 events) and a return to near normal levels during 1918-1947 (3.3 events). The results also point out to significant decadal changes in probabilities of very active years (5 or more MJO events): 0.214 (1880-1895), 0.076 (1896-1917), 0.197 (1918-1947) and 0.193 (1948-1972). After a change in behavior in the 1970s, this probability has increased to 0.329 (1973-1989) and 0.510 (1990-2008). The observational and stochastic simulations presented here call attention to the need to further understand the variability of the MJO on a wide range of time scales.
Resumo:
The genetic diversity and phylogeographical patterns of Trypanosoma species that infect Brazilian bats were evaluated by examining 1043 bats from 63 species of seven families captured in Amazonia, the Pantanal, Cerrado and the Atlantic Forest biomes of Brazil. The prevalence of trypanosonne-infected bats, as estimated by haemoculture, was 12.9%, resulting in 77 Cultures of isolates, most morphologically identified as Trypanosoma cf. cruzi, classified by barcoding using partial sequences from ssrRNA gene into the subgenus Schizotrypanum and identified as T. cruzi (15), T cruzi marinkellei (37) or T. cf. dionisii (25). Phylogenetic analyses using nuclear ssrRNA, glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) and mitochondrial cytochrome b (Cyt b) gene sequences generated three clades, which clustered together forming the subgenus Schizotrypanum. In addition to vector association, bat trypanosomes were related by the evolutionary history, ecology and phylogeography of the bats. Tryponosoma cf. dionisii trypanosomes (32.4%) infected 12 species from four bat families captured in all biomes, from North to South Brazil, and clustered with T. dionisii from Europe despite being separated by some genetic distance. Trypanosoma cruzi marinkellei (49.3%) was restricted to phyllostomid bats from Amazonia to the Pantanal (North to Central). Trypanosoma cruzi (18.2%) was found mainly in vespertilionid and phyllostomid bats from the Pantanal/Cerrado and the Atlantic Forest (Central to Southeast), with a few isolates from Amazonia. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We consider a certain type of second-order neutral delay differential systems and we establish two results concerning the oscillation of solutions after the system undergoes controlled abrupt perturbations (called impulses). As a matter of fact, some particular non-impulsive cases of the system are oscillatory already. Thus, we are interested in finding adequate impulse controls under which our system remains oscillatory. (C) 2009 Elsevier Inc. All rights reserved.