53 resultados para parasite marker
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: Chagas disease is a neglected disease caused by the intracellular parasite Trypanosoma cruzi. Around 30% of the infected patients develop chronic cardiomyopathy or megasyndromes, which are high-cost morbid conditions. Immune response against myocardial self-antigens and exacerbated Th1 cytokine production has been associated with the pathogenesis of the disease. As IL-17 is involved in the pathogenesis of several autoimmune, inflammatory and infectious diseases, we investigated its role during the infection with T. cruzi. Methodology/Principal Findings: First, we detected significant amounts of CD4, CD8 and NK cells producing IL-17 after incubating live parasites with spleen cells from normal BALB/c mice. IL-17 is also produced in vivo by CD4(+), CD8(+) and NK cells from BALB/c mice on the early acute phase of infection. Treatment of infected mice with anti-mouse IL-17 mAb resulted in increased myocarditis, premature mortality, and decreased parasite load in the heart. IL-17 neutralization resulted in increased production of IL-12, IFN-gamma and TNF-alpha and enhanced specific type 1 chemokine and chemokine receptors expression. Moreover, the results showed that IL-17 regulates T-bet, ROR gamma t and STAT-3 expression in the heart, showing that IL-17 controls the differentiation of Th1 cells in infected mice. Conclusion/Significance: These results show that IL-17 controls the resistance to T. cruzi infection in mice regulating the Th1 cells differentiation, cytokine and chemokine production and control parasite-induced myocarditis, regulating the influx of inflammatory cells to the heart tissue. Correlations between the levels of IL-17, the extent of myocardial destruction, and the evolution of cardiac disease could identify a clinical marker of disease progression and may help in the design of alternative therapies for the control of chronic morbidity of chagasic patients.
Resumo:
Isolation of Leishmania parasite and species identification are important for confirmation and to help define the epidemiology of the leishmaniasis. Mice are often used to isolate pathogens, but the most common mouse strains are resistant to infection with parasites from the Leishmania (Viannia) subgenus. In this study we tested the inoculation of interferon gamma knockout (IFNγ KO) mice with biopsy macerates from Leishmania-infected patients to increase the possibility of isolating parasites. Biopsies from twenty five patients with clinical signs of leishmaniasis were taken and tested for the presence of parasites. Immunohistochemical assay (IHC) and conventional histopathology detected the parasite in 88% and 83% of the patients, respectively. Leishmania sp. were isolated in biopsy macerates from 52% of the patients by culture in Grace's insect medium, but 13% of isolates were lost due to contamination. Inoculation of macerates in IFNγ KO mice provides isolation of parasites in 31.8% of the biopsies. Most isolates belong to L. (Viannia) subgenus, as confirmed by PCR, except one that belongs to L. (Leishmania) subgenus. Our preliminary results support the use of IFNγ KO mice to improve the possibility to isolate New World Leishmania species.
Resumo:
Background: Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction ( LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. Results: Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. Conclusion: By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium should be placed in its own cnidarian class, Polypodiozoa.
Resumo:
Trypanosoma cruzi. The aim of this work was to analyze histologically and histometrically the sublingual gland of mice infected with the RAL strain of T cruzi, according to the sex. Swiss mice (Mus musculus) were inoculated with 2 x 10(4) blood trypomastigotes of the RAL strain of T cruzi. In the peak of the parasitemia (12th day) the mice were sacrificed, and the sublingual glands were fixed in ALFAC. HE-stained histological sections were evaluated histometrically. The parasitemia was higher in females. Histopatologically, acini of the infected animals were smaller, with scanty production of secretion, and smaller striated ducts. The nuclei of the demilunes were smaller and showed amastigote nests in the cytoplasm. Karyometrically, nuclei of the acini, demilunes and striated ducts were smaller in the infected mice. Stereologically, it was observed that relative volumes of acini and ducts were smaller and, inversely, relative volumen were greater for the conjunctive tissue in the infected males. The surface densities of acini and ducts were bigger and the diameter and thickness of the wall were smaller in this group. On the other hand, relative volume of acini was smaller and those of the ducts and conjunctive tissue were bigger in the infected females. The diameter and thickness of the wall of acini were smaller, and those of the striated ducts were bigger in this group. The RAL strain of T cruzi caused general atrophy in the sublingual gland, with numerous nests of parasites in the glandular parenchyma.
Resumo:
The highly expressed D7 protein family of mosquito saliva has previously been shown to act as an anti-inflammatory mediator by binding host biogenic amines and cysteinyl leukotrienes (CysLTs). In this study we demonstrate that AnSt-D7L1, a two-domain member of this group from Anopheles stephensi, retains the CysLT binding function seen in the homolog AeD7 from Aedes aegypti but has lost the ability to bind biogenic amines. Unlike any previously characterized members of the D7 family, AnSt-D7L1 has acquired the important function of binding thromboxane A(2) (TXA(2)) and its analogs with high affinity. When administered to tissue preparations, AnSt-D7L1 abrogated Leukotriene C(4) (LTC(4))-induced contraction of guinea pig ileum and contraction of rat aorta by the TXA(2) analog U46619. The protein also inhibited platelet aggregation induced by both collagen and U46619 when administered to stirred platelets. The crystal structure of AnSt-D7L1 contains two OBP-like domains and has a structure similar to AeD(7). In AnSt-D7L1, the binding pocket of the C-terminal domain has been rearranged relative to AeD7, making the protein unable to bind biogenic amines. Structures of the ligand complexes show that CysLTs and TXA(2) analogs both bind in the same hydrophobic pocket of the N-terminal domain. The TXA(2) analog U46619 is stabilized by hydrogen bonding interactions of the omega-5 hydroxyl group with the phenolic hydroxyl group of Tyr 52. LTC(4) and occupies a very similar position to LTE(4) in the previously determined structure of its complex with AeD7. As yet, it is not known what, if any, new function has been acquired by the rearranged C-terminal domain. This article presents, to our knowledge, the first structural characterization of a protein from mosquito saliva that inhibits collagen mediated platelet activation.
Resumo:
Background: Severe outcomes have been described for both Plasmodium falciparum and P. vivax infections. The identification of sensitive and reliable markers of disease severity is fundamental to improving patient care. An intense pro-inflammatory response with oxidative stress and production of reactive oxygen species is present in malaria. Inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and antioxidant agents such as superoxide dismutase-1 (SOD-1) are likely candidate biomarkers for disease severity. Here we tested whether plasma levels of SOD-1 could serve as a biomarker of severe vivax malaria. Methodology/Principal Findings: Plasma samples were obtained from residents of the Brazilian Amazon with a high risk for P. vivax transmission. Malaria diagnosis was made by both microscopy and nested PCR. A total of 219 individuals were enrolled: non-infected volunteers (n = 90) and individuals with vivax malaria: asymptomatic (n = 60), mild (n = 50) and severe infection (n = 19). SOD-1 was directly associated with parasitaemia, plasma creatinine and alanine amino-transaminase levels, while TNF-alpha correlated only with the later enzyme. The predictive power of SOD-1 and TNF-alpha levels was compared. SOD-1 protein levels were more effective at predicting vivax malaria severity than TNF-alpha. For discrimination of mild infection, elevated SOD-1 levels showed greater sensitivity than TNF-alpha (76% vs. 30% respectively; p < 0.0001), with higher specificity (100% vs. 97%; p < 0.0001). In predicting severe vivax malaria, SOD-1 levels exhibited higher sensitivity than TNF-alpha (80% vs. 56%, respectively; p < 0.0001; likelihood ratio: 7.45 vs. 3.14; p, 0.0001). Neither SOD-1 nor TNF-alpha could discriminate P. vivax infections from those caused by P. falciparum. Conclusion: SOD-1 is a powerful predictor of disease severity in individuals with different clinical presentations of vivax malaria.
Resumo:
Background: Despite governmental and private efforts on providing malaria control, this disease continues to be a major health threat. Thus, innovative strategies are needed to reduce disease burden. The malaria vectors, through the injection of saliva into the host skin, play important role on disease transmission and may influence malaria morbidity. This study describes the humoral immune response against Anopheles (An.) darlingi saliva in volunteers from the Brazilian Amazon and addresses the association between levels of specific antibodies and clinical presentation of Plasmodium (P.) vivax infection. Methods: Adult volunteers from communities in the Rondonia State, Brazil, were screened in order to assess the presence of P. vivax infection by light microscopy and nested PCR. Non-infected volunteers and individuals with symptomatic or symptomless infection were randomly selected and plasma collected. An. darlingi salivary gland sonicates (SGS) were prepared and used to measure anti-saliva antibody levels. Plasma interleukin (IL)-10 and interferon (IFN)-gamma levels were also estimated and correlated to anti-SGS levels. Results: Individuals infected with P. vivax presented higher levels of anti-SGS than non-infected individuals and antibody levels could discriminate infection. Furthermore, anti-saliva antibody measurement was also useful to distinguish asymptomatic infection from non-infection, with a high likelihood ratio. Interestingly, individuals with asymptomatic parasitaemia presented higher titers of anti-SGS and lower IFN-gamma/IL-10 ratio than symptomatic ones. In P. vivax-infected asymptomatic individuals, the IFN-gamma/IL-10 ratio was inversely correlated to anti-SGS titers, although not for while in symptomatic volunteers. Conclusion: The estimation of anti-An. darlingi antibody levels can indicate the probable P. vivax infection status and also could serve as a marker of disease severity in this region of Brazilian Amazon.
Resumo:
Background: The ideal malaria parasite populations for initial mapping of genomic regions contributing to phenotypes such as drug resistance and virulence, through genome-wide association studies, are those with high genetic diversity, allowing for numerous informative markers, and rare meiotic recombination, allowing for strong linkage disequilibrium (LD) between markers and phenotype-determining loci. However, levels of genetic diversity and LD in field populations of the major human malaria parasite P. vivax remain little characterized. Results: We examined single-nucleotide polymorphisms (SNPs) and LD patterns across a 100-kb chromosome segment of P. vivax in 238 field isolates from areas of low to moderate malaria endemicity in South America and Asia, where LD tends to be more extensive than in holoendemic populations, and in two monkey-adapted strains (Salvador-I, from El Salvador, and Belem, from Brazil). We found varying levels of SNP diversity and LD across populations, with the highest diversity and strongest LD in the area of lowest malaria transmission. We found several clusters of contiguous markers with rare meiotic recombination and characterized a relatively conserved haplotype structure among populations, suggesting the existence of recombination hotspots in the genome region analyzed. Both silent and nonsynonymous SNPs revealed substantial between-population differentiation, which accounted for similar to 40% of the overall genetic diversity observed. Although parasites clustered according to their continental origin, we found evidence for substructure within the Brazilian population of P. vivax. We also explored between-population differentiation patterns revealed by loci putatively affected by natural selection and found marked geographic variation in frequencies of nucleotide substitutions at the pvmdr-1 locus, putatively associated with drug resistance. Conclusion: These findings support the feasibility of genome-wide association studies in carefully selected populations of P. vivax, using relatively low densities of markers, but underscore the risk of false positives caused by population structure at both local and regional levels.
Resumo:
Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondonia, Brazil) using a high-volume dichotomous sampler (HVDS) and a Micro-Orifice Uniform Deposit Impactor (MOUDI) within the framework of the 2002 LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate) campaign. The campaign spanned the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including levoglucosan, malic acid, isoprene secondary organic aerosol (SOA) tracers and tracers for fungal spores. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM(2.5) size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 mu g m(-3) and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m(-3) during the dry period versus 157 ng m(-3) during the transition period and 52 ng m(-3) during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern, which is consistent with different aerosol formation processes (i.e., gas-to-particle partitioning in the case of malic acid and heterogeneous formation from gas-phase precursors in the case of the 2-methyltetrols). The 2-methyltetrols were mainly associated with the fine mode during all periods, while malic acid was prevalent in the fine mode only during the dry and transition periods, and dominant in the coarse mode during the wet period. The sum of the fungal spore tracers arabitol, mannitol, and erythritol in the PM(2.5) fraction of the HVDS samples during the dry, transition, and wet periods was, on average, 54 ng m(-3), 34 ng m(-3), and 27 ng m(-3), respectively, and revealed minor day/night variation. The mass size distributions of arabitol and mannitol during all periods showed similar patterns and an association with the coarse mode, consistent with their primary origin. The results show that even under the heavy smoke conditions of the dry period a natural background with contributions from bioaerosols and isoprene SOA can be revealed. The enhancement in isoprene SOA in the dry season is mainly attributed to an increased acidity of the aerosols, increased NO(x) concentrations and a decreased wet deposition.
Resumo:
Background: Schistosoma mansoni is the major causative agent of schistosomiasis. The parasite takes advantage of host signals to complete its development in the human body. Tumor necrosis factor-alpha (TNF-alpha) is a human cytokine involved in skin inflammatory responses, and although its effect on the adult parasite's metabolism and egg-laying process has been previously described, a comprehensive assessment of the TNF-alpha pathway and its downstream molecular effects is lacking. Methodology/Principal Findings: In the present work we describe a possible TNF-alpha receptor (TNFR) homolog gene in S. mansoni (SmTNFR). SmTNFR encodes a complete receptor sequence composed of 599 amino acids, and contains four cysteine-rich domains as described for TNFR members. Real-time RT-PCR experiments revealed that SmTNFR highest expression level is in cercariae, 3.5 (+/- 0.7) times higher than in adult worms. Downstream members of the known human TNF-alpha pathway were identified by an in silico analysis, revealing a possible TNF-alpha signaling pathway in the parasite. In order to simulate parasite's exposure to human cytokine during penetration of the skin, schistosomula were exposed to human TNF-alpha just 3 h after cercariae-to-schistosomula in vitro transformation, and large-scale gene expression measurements were performed with microarrays. A total of 548 genes with significantly altered expression were detected, when compared to control parasites. In addition, treatment of adult worms with TNF-alpha caused a significantly altered expression of 1857 genes. Interestingly, the set of genes altered in adults is different from that of schistosomula, with 58 genes in common, representing 3% of altered genes in adults and 11% in 3 h-old early schistosomula. Conclusions/Significance: We describe the possible molecular elements and targets involved in human TNF-alpha effect on S. mansoni, highlighting the mechanism by which recently transformed schistosomula may sense and respond to this host mediator at the site of cercarial penetration into the skin.
Resumo:
Background: Schistosomiasis continues to be a significant public health problem. This disease affects 200 million people worldwide and almost 800 million people are at risk of acquiring the infection. Although vaccine development against this disease has experienced more failures than successes, encouraging results have recently been obtained using membrane-spanning protein antigens from the tegument of Schistosoma mansoni. Our group recently identified Sm29, another antigen that is present at the adult worm tegument surface. In this study, we investigated murine cellular immune responses to recombinant (r) Sm29 and tested this protein as a vaccine candidate. Methods and Findings: We first show that Sm29 is located on the surface of adult worms and lung-stage schistosomula through confocal microscopy. Next, immunization of mice with rSm29 engendered 51%, 60% and 50% reduction in adult worm burdens, in intestinal eggs and in liver granuloma counts, respectively (p<0.05). Protective immunity in mice was associated with high titers of specific anti-Sm29 IgG1 and IgG2a and elevated production of IFN-gamma, TNF-alpha and IL-12, a typical Th1 response. Gene expression analysis of worms recovered from rSm29 vaccinated mice relative to worms from control mice revealed a significant (q<0.01) down-regulation of 495 genes and up-regulation of only 22 genes. Among down-regulated genes, many of them encode surface antigens and proteins associated with immune signals, suggesting that under immune attack schistosomes reduce the expression of critical surface proteins. Conclusion: This study demonstrates that Sm29 surface protein is a new vaccine candidate against schistosomiasis and suggests that Sm29 vaccination associated with other protective critical surface antigens is the next logical strategy for improving protection.
Resumo:
Ectatomma parasiticum Feitosa & Fresneau, a new ant species socially parasitic on Ectatomma tuberculatum (Olivier), is described from gynes discovered in Apazapan, state of Veracruz, Mexico, and reared in the laboratory. Ectatomma parasiticum is the first social parasite described in the Ectatomminae. This species can be distinguished from its host by morphological and behavioral features characteristic of the inquilines known in other ant subfamilies including reduced size, thickened petiole, and agonistic interactions with host species.
Resumo:
Objectives: The aim of this study was to determine the correlation between ductus venosus (DV) Doppler velocimetry and fetal cardiac troponin T (cTnT). Study design: Between March 2007 and March 2008, 89 high-risk pregnancies were prospectively studied. All patients delivered by cesarean section and the Doppler exams were performed on the same day. Multiple regression included the following variables: maternial age, parity, hypertension, diabetes, gestational age at delivery, umbilical artery (UA) S/D ratio, diagnosis of absent or reversed end-diastolic flow velocity (AREDV) in the UA, middle cerebral artery (MCA) pulsatility index (131), and DV pulsatility index for veins (PIV). Immediately after delivery, UA blood samples were obtained for the measurement of pH and cTnT levels. Statistical analysis included the Kruskal-Wallis test and multiple regressions. Results: The results showed a cTnT concentration at birth >0.05 ng/ml in nine (81.8%) of AREDV cases, a proportion significantly higher than that observed in normal UA S/D ratio and UA S/D ratio >p95 with positive diastolic blood flow (7.7 and 23.1%, respectively, p < 0.001). A positive correlation Was found between abnormal DV-PIV and elevated cTnT levels in the UA. Multiple regression identified DV-PIV and a diagnosis of AREDV as independent factors associated with abnormal fetal cTnT levels (p < 0.0001, F(2.86) = 63.5, R = 0.7722). Conclusion: DV-PIV was significantly correlated with fetal cTnT concentrations at delivery. AREDV and abnormal DV flow represent severe cardiac compromise, with increased systemic venous pressure, and a rise in right ventricular afterload, demonstrated by myocardial damage and elevated fetal cTnT. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background and objectives: As well as being a marker of body iron stores, serum ferritin (sFerritin) has also been shown to be a marker of inflammation in hemodialysis (HD) patients. The aim of this study was to analyze whether sFerritin is a reliable marker of the iron stores present in bone marrow of HD patients. Design: Histomorphometric analysis of stored transiliac bone biopsies was used to assess iron stores by determining the number of iron-stained cells per square millimeter of bone marrow. Results: In 96 patients, the laboratory parameters were hemoglobin = 11.3 +/- 1.6 g/dl, hematocrit = 34.3 +/- 5%, sFerritin 609 +/- 305 ng/ml, transferrin saturation = 32.7 +/- 22.5%, and C-reactive protein (CRP) = 0.9 +/- 1.4 mg/dl. sFerritin correlated significantly with CRP, bone marrow iron, and time on HD treatment W = 0.006, 0.001, and 0.048, respectively). The independent determinants of sFerritin were CRP (beta-coef = 0.26; 95% CI = 24.6 to 132.3) and bone marrow iron (beta-coef = 0.32; 95% CI = 0.54 to 2.09). Bone marrow iron was higher in patients with sFerritin >500 ng/ml than in those with sFerritin :5500 ng/ml. In the group of patients with sFerritin :5500 ng/ml, the independent determinant of sFerritin was bone marrow iron (beta-coef = 0.48, 95% CI = 0.48 to 1.78), but in the group of patients with sFerritin >500 ng/ml, no independent determinant of sFerritin was found. Conclusions: sFerritin adequately reflects iron stores in bone marrow of HD patients.
Resumo:
Proteinuria was associated with cardiovascular events and mortality in community-based cohorts. The association of proteinuria with mortality and cardiovascular events in patients undergoing percutaneous coronary intervention (PCI) was unknown. The association of urinary dipstick proteinuria with mortality and cardiovascular events (composite of death, myocardial infarction, or nonhemorrhagic stroke) in 5,835 subjects of the EXCITE trial was evaluated. Dipstick urinalysis was performed before PCI, and proteinuria was defined as trace or greater. Subjects were followed up for 210 days/7 months after enrollment for the occurrence of events. Multivariate Cox regression analysis evaluated the independent association of proteinuria with each outcome. Mean age was 59 years, 21% were women, 18% had diabetes mellitus, and mean estimated glomerular filtration rate was 90 ml/min/1.73 m(2). Proteinuria was present in 750 patients (13%). During follow-up, 22 subjects (2.9%) with proteinuria and 54 subjects (1.1%) without proteinuria died (adjusted hazard ratio 2.83, 95% confidence interval [CI] 1.65 to 4.84, p <0.001). The severity of proteinuria attenuated the strength of the association with mortality after PCI (low-grade proteinuria, hazard ratio 2.67, 95% CI 1.50 to 4.75; high-grade proteinuria, hazard ratio 3.76, 95% CI 1.24 to 11.37). No significant association was present for cardiovascular events during the relatively short follow-up, but high-grade proteinuria tended toward increased risk of cardiovascular events (hazard ratio 1.45, 95% CI 0.81 to 2.61). In conclusion, proteinuria was strongly and independently associated with mortality in patients undergoing PCI. These data suggest that such a relatively simple and clinically easy to use tool as urinary dipstick may be useful to identify and treat patients at high risk of mortality at the time of PCI. (C) 2008 Elsevier Inc. All rights reserved. (Am J Cardiol 2008;102:1151-1155)