13 resultados para paleozoic shale
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Paleomagnetic and rockmagnetic data are reported for the Floresta Formation (Santa Fe Group) of the Sanfranciscana Basin, central Brazil. This formation represents the Permo-Carboniferous glacial record of the basin and comprises the Brocoto (diamictites and flow diamictites), Brejo do Arroz (red sandstones and shales with dropstones and invertebrate trails), and Lavado (red sandstones) members, which crop out near the cities of Santa Fe de Minas and Canabrava, Minas Gerais State. Both Brejo do Arroz and Lavado members were sampled in the vicinities of the two localities. Alternating field and thermal demagnetizations of 268 samples from 76 sites revealed reversed components of magnetization in all samples in accordance with the Permo-Carboniferous Reversed Superchron. The magnetic carriers are magnetite and hematite with both minerals exhibiting the same magnetization component, suggesting a primary origin for the remanence. We use the high-quality paleomagnetic pole for the Santa Fe Group (330.9 degrees E 65.7 degrees S; N = 60; alpha(95) = 4.1 degrees; k = 21) in a revised late Carboniferous to early Triassic apparent polar wander path for South America. On the basis of this result it is shown that an early Permian Pangea A-type fit is possible if better determined paleomagnetic poles become available.
Resumo:
We investigate the depositional time scale of lithological couplets (fine sandstone/siltstone-siltstone/mudstone) from two distinctive outcrops of Permo-Carboniferous glacial rhythmites in the Itarare Group (Parana Basin, Brazil). Resolving the fundamental issue of time scale for these rhythmites is important in light of recent evidence for paleosecular variation measured in these sequences. Spectral analysis and tuning of high-resolution gray scale scans of sediment core microstratigraphy, which comprises pervasive laminations, reveal a comparable spectral content at both localities, with a frequency suite interpreted as that of short-term climate variability of Recent and modern times. This evidence for decadal- to centennial-scale deposition of these lithological couplets is discussed in light of the `varvic` character, i.e., annual time scale that was previously assumed for the rhythmites.
Resumo:
We studied the P-T-t evolution of a mid-crustal igneous-metamorphic segment of the Famatinian Belt in the eastern sector of the Sierra de Velasco during its exhumation to the upper crust. Thermobarometric and geochronological methods combined with field observations permit us to distinguish three tectonic levels. The deepest Level I is represented by metasedimentary xenoliths and characterized by prograde isobaric heating at 20-25 km depth. Early/Middle Ordovician granites that contain xenoliths of Level I intruded in the shallower Level II. The latter is characterized by migmatization coeval with granitic intrusions and a retrograde isobaric cooling P-T path at 14-18 km depth. Level II was exhumed to the shallowest supracrustal Level III, where it was intruded by cordierite-bearing granites during the Middle/Late Ordovician and its host-rock was locally affected by high temperature-low pressure HT/LP metamorphism at 8-10 km depth. Level III was eventually intruded by Early Carboniferous granites after long-term slow exhumation to 6-7 km depth. Early/Middle Ordovician exhumation of Level II to Level III (Exhumation Period I,0.25-0.78 mm/yr) was faster than exhumation of Level III from the Middle/Late Ordovician to the Lower Carboniferous (Exhumation Period II, 0.01-0.09 mm/yr). Slow exhumation rates and the lack of regional evidence of tectonic exhumation suggest that erosion was the main exhumation mechanism of the Famatinian Belt. Widespread slow exhumation associated with crustal thickening under a HT regime suggests that the Famatinian Belt represents the middle crust of an ancient Altiplano-Puna-like orogen. This thermally weakened over-thickened Famatinian crust was slowly exhumed mainly by erosion during similar to 180 Myr. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The Santa Rosa and Sauce Guacho plutons are two post-collisional peraluminous Late Devonian to Early Carboniferous leucogranites that intruded the banded schists of the Ancasti Formation. The leucogranites are composed of microcline phenocrysts along with quartz, plagioclase, muscovite, biotite, ilmenite, tourmaline, apatite, monazite and zircon. Their geochemical composition is consistent with S-type granites and mineralogically they belong to MPG granites (muscovite-peraluminous granites). It is proposed that granite magma generation was related to shear zones that concentrated fluids in the metasedimentary crust during a collision or transcurrent tectonics. U-Pb analyses on monazite gave an age of 369.8 +/- 5.3 Ma, while Sm/Nd isotopic data yield epsilon(Nd(t)) values of -5.3 for Sauce Guacho and -5.7 for Santa Rosa indicating crustal provenance. Nd model ages between 1,544 and 1,571 Ma are within the range of magmatic rocks from the Lower Ordovician Famatinian Arc in the Central Sierras Pampeanas.
Resumo:
The basement in the `Altiplano` high plateau of the Andes of northern Chile mostly consists of late Paleozoic to Early Triassic felsic igneous rocks (Collahuasi Group) that were emplaced and extruded along the western margin of the Gondwana supercontinent. This igneous Suite crops out in the Collalluasi area and forms the backbone of most of the high Andes from latitude 20 degrees to 22 degrees S. Rocks of the Collahuasi Group and correlative formations form art extensive belt of volcanic and subvolcanic rocks throughout the main Andes of Chile, the Frontal Cordillera of Argentina (Choiyoi Group or Choiyoi Granite-Rhyolite Province), and the Eastern Cordillera of Peru. Thirteen new SHRIMP U-Pb zircon ages from the Collahuasi area document a bimodal timing for magnatism, with a dominant peak at about 300 Ma and a less significant one at 244 Ma. Copper-Mo porphyry mineralization is related to the younger igneous event. Initial Hf isotopic ratios for the similar to 300 Ma zircons range from about -2 to +6 indicating that the magmas incorporated components with a significant crustal residence time. The 244 Ma magmas were derived from a less enriched source, with the initial HT values ranging from +2 to +6, suggestive of a mixture with a more depleted component. Limited whole rock (144)Nd/(143)Nd and (87)Sr/(86)Sr isotopic ratios further support the likelihood that the Collahuasi Group magmatism incorporated significant older crustal components, or at least a mixture of crustal sources with more and less evolved isotopic signatures. (C) 2007 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
Trace element and isotopic data obtained for mantle spinel Iherzolites and diorite dykes from the Baldissero massif (Ivrea-Verbano Zone, Western Italy) provide new, valuable constraints on the petrologic and geodynamic evolution of the Southern Alps in Paleozoic to Mesozoic times. Whole rock and mineral chemistry indicates that Baldissero Iherzolites can be regarded as refractory mantle residues following limited melt extraction. In particular, the Light Rare Earth Elements (LREE)-depleted and fractionated compositions of whole rock and clinopyroxene closely match modelling results for refractory residues after low degrees (similar to 4-5%) of near-fractional melting of depleted mantle, possibly under garnet-facies conditions. Following this, the peridotite sequence experienced subsolidus re-equilibration at lithospheric spinel-facies conditions and intrusion of several generations of dykes. However, Iherzolites far from dykes show very modest metasomatic changes, as evidenced by the crystallisation of accessory titanian pargasite and the occurrence of very slight enrichments in highly incompatible trace elements (e.g. Nb). The Re-Os data for Iherzolites far from the dykes yield a 376 Ma (Upper Devonian) model age that is considered to record a partial melting event related to the Variscan orogenic cycle s.l. Dioritic dykes cutting the mantle sequence have whole rock, clinopyroxene and plagioclase characterised by high radiogenic Nd and low radiogenic Sr, which point to a depleted to slightly enriched mantle source. Whole rock and mafic phases of diorites have high Mg# values that positively correlate with the incompatible trace element concentrations. The peridotite at the dyke contact is enriched in orthopyroxene, iron and incompatible trace elements with respect to the Iherzolites far from dykes. Numerical simulations indicate that the geochemical characteristics of the diorites can be explained by flow of a hydrous, silica-saturated melt accompanied by reaction with the ambient peridotite and fractional crystallisation. The composition of the more primitive melts calculated in equilibrium with the diorite minerals show tholeiitic to transitional affinity. Internal Sm-Nd, three-point isochrons obtained for two dykes suggest an Upper Triassic-Lower Jurassic emplacement age (from 204 31 to 198 29 Ma). Mesozoic igneous events are unknown in the southern Ivrea-Verbano Zone (IVZ), but the intrusion of hydrous melts, mostly silica-saturated, have been well documented in the Finero region, i.e. the northernmost part of IVZ and Triassic magmatism with calc-alkaline to shoshonitic affinity is abundant throughout the Central-Eastern Alps. The geochemical and chronological features of the Baldissero diorites shed new light on the geodynamic evolution of the Southern Alps before the opening of the Jurassic Tethys. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A detailed rock magnetic and paleomagnetic study was performed on samples from the Neoproterozoic Itajai Basin in the state of Santa Catarina, Brazil, in order to better constrain the paleogeographic evolution of the Rio de la Plata craton between 600 and 550 Ma. However, rock magnetic properties typical of remagnetized rocks and negative response in the fold test indicated that these rocks carried a secondary chemical remanent magnetization. After detailed AF and thermal cleaning, almost all samples showed a normal polarity characteristic remanent magnetization component close to the present geomagnetic field. The main magnetic carriers are magnetite and hematite, probably of authigenic origin. The mean paleomagnetic pole of the ltajai Basin is located at Plat= -84 degrees, Plong = 97.5 degrees (A95 = 2 degrees) and overlaps the lower Cretaceous segment of the apparent polar wander path of South America, suggesting a cause and effect with the opening of the South Atlantic Ocean. A compilation of remagnetized paleomagnetic poles from South America is presented that highlights the superposition of several large-scale remagnetization events between the Cambrian and the Cretaceous. It is suggested that some paleomagnetic poles used to calibrate the APWP of Gondwana at Precambrian times need to be revised; the indication of remagnetized areas in southern South America may offer some help in the selection of sites for future paleomagnetic investigations in Precambrian rocks. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The deep crustal structure of the Parana Basin of southern Brazil is investigated by analyzing P- and PP-wave receiver functions at 17 Brazilian Lithosphere Seismic Project stations within the basin. The study area can be described as a typical Paleozoic intracratonic basin that hosts one of the largest Large Igneous Province of the world and makes a unique setting for investigating models of basin subsidence and their interaction with mantle plumes. Our study consists of (1) an analysis of the Moho interaction phases in the receiver functions to obtain the thickness and bulk Vp/Vs ratio of the basin`s underlying crust and (2) a joint inversion with Rayleigh-wave dispersion velocities from an independent tomographic study to delineate the detailed S-wave velocity variation with depth. The results of our analysis reveal that Moho depths and bulk Vp/Vs ratios (including sediments) vary between 41 and 48 km and between 1.70 and 1.76, respectively, with the largest values roughly coinciding with the basin`s axis, and that S-wave velocities in the lower crust are generally below 3.8 km/s. Select sites within the basin, however, show lower crustal S-wave velocities slightly above 3.9 km/s suggestive of underplated mafic material. We show that these observations are consistent with a fragmented cratonic root under the Parana basin that defined a zone of weakness for the initial Paleozoic subsidence of the basin and which allowed localized mafic underplating of the crust along the suture zones by Cenozoic magmatism.
Resumo:
We present four SHRIMP U-Pb zircon ages for the Choiyoi igneous province from the San Rafael Block, central-western Argentina. Dated samples come from the Yacimiento Los Reyunos Formation (281.4 +/- 2.5 Ma) of the Cochico Group (Lower Choiyoi section: andesitic breccias, dacitic to rhyolitic ignimbrites and continental conglomerates). Agua de los Burros Formation (264.8 +/- 2.3 Ma and 264.5 +/- 3.0 Ma) and Cerro Carrizalito Formation (251.9 +/- 2.7 Ma Upper Choiyoi section: rhyolitic ignimbrites and pyroclastic flows) spanning the entire Permian succession of the Choiyoi igneous province. A single ziron from the El Imperial Formation, that is overlain unconformably by the Choiyoi succession, yielded an early Permian age (297.2 +/- 5.3 Ma). while the main detrital zircon population indicated an Ordovician age (453.7 +/- 8.1 Ma). The new data establishes a more precise Permian age (Artinskian-Lopingian) for the section studied spanning 30 Ma of volcanic activity. Volcanological observations for the Choiyoi succession support the occurrence of explosive eruptions of plinian to ultraplinian magnitudes, capable of injecting enormous volumes of tephra in the troposphere-stratosphere. The new SHRIMP ages indicate contemporaneity between the Choyoi succession and the upper part of the Parana Basin late Paleozoic section, from the Irad up to the Rio do Rasto formations, encompassing about 24 Ma. Geochemical data show a general congruence in compositional and tectonic settings between the volcanics and Parana Basin Permian ash fall derived layers of bentonites. Thickness and granulometry of ash fall layers broadly fit into the depletion curve versus distance from the remote source vent of ultraplinian eruptions. Thus, we consider that the Choiyoi igneous province was the source of ash fall deposits in the upper Permian section of the Parana Basin. Data presented here allow a more consistent correlation between tectono-volcanic Permian events along the paleo-Pacific margin of southwestern Gondwana and the geological evolution of neighboring Paleozoic foreland basins in South America and Africa. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The Early Paleozoic geodynamic evolution in SW Iberia is believed to have been dominated by the opening of the Rheic Ocean. The Rheic Ocean is generally accepted to have resulted from the drift of peri-Gondwanan terranes such as Avalonia from the northern margin of Gondwana during Late Cambrian-Early Ordovician times. The closure of the Rheic Ocean was the final result of a continent-continent collision between Gondwana and Laurussia that produced the Variscan orogen. The Ossa-Morena Zone is a peri-Gondwana terrane, which preserves spread fragments of ophiolites - the Internal Ossa-Morena Zones Ophiolite Sequences (IOMZOS). The final patchwork of the IOMZOS shows a complete oceanic lithospheric sequence with geochemical characteristics similar to the ocean-floor basalts, without any orogenic fingerprint and/or crustal contamination. The IOMZOS were obducted and imbricated with high pressure lithologies. Based on structural, petrological and whole-rock geochemical data, the authors argue that the IOMZOS represent fragments of the oceanic lithosphere from the Rheic Ocean. Zircon SHRIMP U-Pb geochronological data on metagabbros point to an age of ca. 480 Ma for IOMZOS, providing evidence of a well-developed ocean in SW Iberia during this period, reinforcing the interpretation of the Rheic Ocean as a wide ocean among the peri-Gondwanan terranes during Early Ordovician times.
Resumo:
Lycopodiopsis derbyi Renault was analyzed on the basis of compressed silicified stems from four Guadalupian outcrops of the Parana Basin (Corumbatai Formation) in the State of Sao Paulo, Southern Brazil. Dichotomous stems have been recorded, and three different branch regions related to apoxogenesis are described. The most proximal region has larger, clearly rhomboidal leaf cushions, with protruding upper edges; the intermediate transitional region also has rhombic leaf cushions, but they are smaller and less elongated than the lower in the same axis; finally, the most distal region reveals only incipient cushions, with inconspicuous infrafoliar bladders; interspersed microphylls were still attached. A well preserved branch representative of this most distal region was sectioned; it has a siphonostelic cylinder similar to that previously described for L derbyi. The cortex, however, shows new traits, such as a short portion of elongated cells between the periderm and the external cortex (or leaf cushion tissue). The stems were apparently silicified prior to their final burial but were probably not transported for long distances. Their final burial may have taken place during storm events, which were common during the deposition of the Corumbatai Formation. These stems are commonly deformed due to compression, mainly because the internal cortical portions rapidly decayed prior to silicification due to their thin-walled tissue, and are therefore not preserved. The common alkalinity of a shallow marine environment such as that in which the Corumbatai Formation was deposited, should mobilize the silica and favors petrifaction. Based on the new data, an emended diagnosis is proposed and a modification of the identification key published by Thomas and Meyen in 1984 for Upper Paleozoic Lycopsida is suggested. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Three species of chondrichthyans are reported from conglomeratic sandstone at the base of the Lower Permian (Artinskian) Irati Formation (Parana Basin) near Rio Claro, Sao Paulo State, Brazil. The fossils include: 1) dispersed teeth of the petalodont ltapyrodus punctatus Silva Santos 1990, first described from the Permian (Artinskian) Pedra do Fogo Formation, Parnaiba Basin, Northeast Brazil; 2) a new species of tooth of the Order Orodontiformes; and 3) a new species of finspine of the Order Ctenacanthiformes. These fossils occur in an allochthonous assemblage of vertebrate remains including other Chondrichthyes, Xenacanthiformes and cladodonts, paleonisciform bony fish, and tetrapods. This discovery is a significant contribution to the sparse record of South American Chondrichthyes from the Early Permian and raises questions regarding the paleoenvironmental adaptations among these fish within Paleozoic basins of Brazil at this time. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The metamorphosed banded iron formation from the Nogoli Metamorphic Complex of western Sierra de San Luis, Eastern Sierras Pampeanas of Argentina (Nogoli area, 32 degrees 55`S-66 degrees 15`W) is classified as an oxide facies iron formation of Algoma Type, with a tectonic setting possibly associated with an island arc or back arc, on the basis of field mapping, mineral and textural arrangements and whole rock geochemical features. The origin of banded iron formation is mainly related to chemical precipitation of hydrogenous sediments from seawater in oceanic environments. The primary chemical precipitate is a result of solutions that represent mixtures of seawater and hydrothermal fluids, with significant dilution by maficultramafic volcanic and siliciclastic materials. Multi-stage T(DM) model ages of 1670, 1854 and 1939 Ma and positive, mantle-like xi Nd((1502)) values of +3.8, +1.5 and +0.5 from the banded iron formation are around the range of those mafic to ultramafic meta-volcanic rocks of Nogoli Metamorphic Complex, which are between 1679 and 1765 Ma and +2.64 and +3.68, respectively. This Sm and Nd isotopic connection suggests a close genetic relationship between ferruginous and mafic-ultramafic meta-volcanic rocks, as part of the same island arc or back arc setting. A previous Sm-Nd whole rock isochron of similar to 1.5 Ga performed on mafic-ultramafic meta-volcanic rocks led to the interpretation that chemical sedimentation as old as Mesoproterozoic is possible for the banded iron formation. A clockwise P-T path can be inferred for the regional metamorphic evolution of the banded iron formation, with three distinctive trajectories: (1) Relict prograde M(1)-M(3) segment with gradual P and T increase from greenschist facies at M(1) to amphibolite facies at M(3). (2) Peak P-T conditions at high amphibolite-low granulite facies during M(4). (3) Retrograde counterpart of M(4), that returns from amphibolite facies and stabilizes at greenschist facies during M(5). Each trajectory may be regarded as produced by different tectonic events related to the Pampean? (1) and the Famatinian (2 and 3) orogenies, during the Early to Middle Paleozoic. The Nogoli Metamorphic Complex is interpreted as part of a greenstone belt within the large Meso- to Neoproterozoic Pampean Terrane of the Eastern Sierras Pampeanas of Argentina. (C) 2009 Elsevier Ltd. All rights reserved.