34 resultados para olfactory
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A morphological and cell culture study from nasal mucosa of dogs was performed in order to establish a protocol to obtain a cell population committed to neuronal lineage, as a proposal for the treatment of traumatic and degenerative lesions in these animals, so that in the future these results could be applied to the human species. Twelve mongrel dogs of 60-day aged pregnancy were collected from urban pound dogs in São Paulo. Tissue from cribriform ethmoidal lamina of the fetuses was collected at necropsy under sterile conditions around 1h to 2h postmortem by uterine sections and sections from the fetal regions described above. Isolated cells of this tissue were added in DMEM/F-12 medium under standard conditions of incubation (5% CO², >37ºC). Cell culture based on isolated cells from biopsies of the olfactory epithelium showed rapid growth when cultured for 24 hours, showing phase-bright sphere cells found floating around the fragments, attached on culture flasks. After 20 days, a specific type of cells, predominantly ellipsoids or fusiform cells was characterized in vitro. The indirect immunofluorescence examination showed cells expressing markers of neuronal precursors (GFAP, neurofilament, oligodendrocyte, and III â-tubulin). The cell proliferation index showed Ki67 immunostaining with a trend to label cell groups throughout the apical region, while PCNA immunostaining label predominantly cell groups lying above the basal lamina. The transmission electron microscopy from the olfactory epithelium of dogs revealed cells with electron-dense cytoplasm and preserving the same distribution as those of positive cell staining for PCNA. Metabolic activity was confirmed by presence of euchromatin in the greatest part of cells. All these aspects give subsidies to support the hypothesis about resident progenitor cells among the basal cells of the olfactory epithelium, committed to renewal of these cell populations, especially neurons.
Resumo:
OBJECTIVES: To determine somesthetic, olfactory, gustative and salivary abnormalities in patients with burning mouth syndrome (BMS), idiopathic trigeminal neuralgia (ITN) and trigeminal postherpetic neuralgia (PHN). SUBJECTS AND METHODS: Twenty patients from each group (BMS, ITN, PHN) and 60 healthy controls were evaluated with a systematized quantitative approach of thermal (cold and warm), mechanical, pain, gustation, olfaction and salivary flow; data were analyzed with ANOVA, Tukey, Kruskal Wallis and Dunn tests with a level of significance of 5%. RESULTS: There were no salivary differences among the groups with matched ages; the cold perception was abnormal only at the mandibular branch of PHN (P = 0.001) and warm was abnormal in all trigeminal branches of PHN and BMS; mechanical sensitivity was altered at the mandibular branch of PHN and in all trigeminal branches of BMS. The salty, sweet and olfactory thresholds were higher in all studied groups; the sour threshold was lower and there were no differences of bitter. CONCLUSION: All groups showed abnormal thresholds of gustation and olfaction; somesthetic findings were discrete in ITN and more common in PHN and BMS; central mechanisms of balance of sensorial inputs might be underlying these observations. Oral Diseases (2010) 16, 482-487
Resumo:
Foragers can improve search efficiency, and ultimately fitness, by using social information: cues and signals produced by other animals that indicate food location or quality. Social information use has been well studied in predator-prey systems, but its functioning within a trophic level remains poorly understood. Eavesdropping, use of signals by unintended recipients, is of particular interest because eavesdroppers may exert selective pressure on signaling systems. We provide the most complete study to date of eavesdropping between two competing social insect species by determining the glandular source and composition of a recruitment pheromone, and by examining reciprocal heterospecific responses to this signal. We tested eavesdropping between Trigona hyalinata and Trigona spinipes, two stingless bee species that compete for floral resources, exhibit a clear dominance hierarchy and recruit nestmates to high-quality food sources via pheromone trails. Gas chromatography-mass spectrometry of T. hyalinata recruitment pheromone revealed six carboxylic esters, the most common of which is octyl octanoate, the major component of T. spinipes recruitment pheromone. We demonstrate heterospecific detection of recruitment pheromones, which can influence heterospecific and conspecific scout orientation. Unexpectedly, the dominant T. hyalinata avoided T. spinipes pheromone in preference tests, while the subordinate T. spinipes showed neither attraction to nor avoidance of T. hyalinata pheromone. We suggest that stingless bees may seek to avoid conflict through their eavesdropping behavior, incorporating expected costs associated with a choice into the decision-making process.
Resumo:
LRRK2 mutations can cause familial and sporadic Parkinson`s disease (PD) with Lewy-body pathology at post-mortem. Studies of olfaction in LRRK2 are sparse and incongruent. We applied a previously validated translation of the 16 item smell identification test from Sniffin` Sticks (SS-16) to 14 parkinsonian carriers of heterozygous G2019S LRRK2 mutation and compared with 106 PD patients and 118 healthy controls. The mean SS-16 score in LRRK2 was higher than in PD (p < 0.001, 95% CI for beta = -4.7 to -1.7) and lower than in controls (p = 0.007, 95% CI for beta = +0.6 to +3.6). In the LRRK2 group, subjects with low scores had significantly more dyskinesia. They also had younger age of onset, longer disease duration, and reported less frequently a family history of PD, but none of these other differences reached significance. Odor identification is diminished in LRRK2 parkinsonism but not to the same extent as in idiopathic PD. (C) 2010 Movement Disorder Society
Resumo:
Animals kept as pets may be considered sentinels for environmental factors to which humans could be exposed. Olfactory and respiratory epithelia are directly subjected to airborne factors, which could cause DNA lesions, and the alkaline comet assay is considered a reliable tool for the assessment of DNA damage. The objective of this work is to evaluate the extent of DNA damage by the comet assay of the olfactory and respiratory epithelia of dogs from different regions of the city of sao Paulo, Brazil. Thirty-three clinically healthy dogs, aged 5 years or more, were used in the study, with 7 from the North region of Sao Paulo, 7 from the South region, 3 dogs from the East region, and 16 dogs from the West city region. Three dogs younger than 6 months were used as controls. DNA damage was analyzed by the alkaline comet assay. We observed no difference in histopathological analysis of olfactory and respiratory epithelia between dogs from different regions of Sao Paulo. Dogs older than 5 years presented significantly higher comet length in both olfactory and respiratory epithelia, when compared with controls, indicating DNA damage. When separated by regions, olfactory and respiratory epithelia presented similar DNA damage in dogs from different regions of Sao Paulo, corroborating with similar levels of particulate matter index (PM10) in all regions of the city. In this study, we report for the first time that the comet assay can be used to quantify the extent of DNA damage in dog olfactory and respiratory epithelia, and that comet length (DNA damage) increases with age, probably due to environmental factors. Air pollution, as measured by PM 10, can be responsible for this DNA damage. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Prenatal lipopolysaccharide (LPS) exposure causes reproductive, behavioral and neurochemical defects in both dams and pups. The present study evaluated male rats prenatally treated with LPS for behavioral and neurological effects related to the olfactory system, which is the main sensorial path in rodents. Pregnant Wistar rats received 100 mu g/kg of LPS intraperitoneally (i.p.) on gestational day (GD) 9.5, and maternal behavior was evaluated. Pups were evaluated for (1) maternal odor preference, (2) aversion to cat odor, (3) monoamine levels and turnover in the olfactory bulb (OB) and (4) protein expression (via immunoblotting) within the OB dopaminergic system and glial cells. Results showed that prenatal LPS exposure impaired maternal preference and cat odor aversion and decreased dopamine (DA) levels in the OB. This dopaminergic impairment may have been due to defects in another brain area given that protein expression of the first enzyme in the DA biosynthetic pathway was unchanged in the OB. Moreover, there was no change in the protein expression of the DA receptors. The fact that the number of astrocytes and microglia was not increased suggests that prenatal LPS did not induce neuroinflammation in the OB. Furthermore, given that maternal care was not impaired, abnormalities in the offspring were not the result of reduced maternal care. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The vomeronasal system is crucial for social and sexual communication in mammals. Two populations of vomeronasal sensory neurons, each expressing G alpha i2 or G alpha o proteins, send projections to glomeruli of the rostral or caudal accessory olfactory bulb, rAOB and cAOB, respectively. In rodents, the G alpha i2- and G alpha o-expressing vomeronasal pathways have shown differential responses to small/volatile vs. large/non-volatile semiochemicals, respectively. Moreover, early gene expression suggests predominant activation of rAOB and cAOB neurons in sexual vs. aggressive contexts, respectively. We recently described the AOB of Octodon degus, a semiarid-inhabiting diurnal caviomorph. Their AOB has a cell indentation between subdomains and the rAOB is twice the size of the cAOB. Moreover, their AOB receives innervation from the lateral aspect, contrasting with the medial innervation of all other mammals examined to date. Aiming to relate AOB anatomy with lifestyle, we performed a morphometric study on the AOB of the capybara, a semiaquatic caviomorph whose lifestyle differs remarkably from that of O. degus. Capybaras mate in water and scent-mark their surroundings with oily deposits, mostly for male-male communication. We found that, similar to O. degus, the AOB of capybaras shows a lateral innervation of the vomeronasal nerve, a cell indentation between subdomains and heterogeneous subdomains, but in contrast to O. degus the caudal portion is larger than the rostral one. We also observed that four other caviomorph species present a lateral AOB innervation and a cell indentation between AOB subdomains, suggesting that those traits could represent apomorphies of the group. We propose that although some AOB traits may be phylogenetically conserved in caviomorphs, ecological specializations may play an important role in shaping the AOB.
Resumo:
Early-life environmental events, such as the handling procedure, can induce long-lasting alterations upon several behavioral and neuroendocrine systems. However, the changes within the pups that could be causally related to the effects in adulthood are still poorly understood. In the present study, we analyzed the effects of neonatal handling on behavioral (maternal odor preference) and biochemical (cyclic AMP response element-binding protein (CREB) phosphorylation, noradrenaline (NA), and serotonin (5-HT) levels in the olfactory bulb (OB)) parameters in 7-day-old male and female rat pups. Repeated handling (RH) abolished preference for the maternal odor in female pups compared with nonhandled (NH) and the single-handled (SH) ones, while in RH males the preference was not different than NH and SH groups. In both male and female pups, RH decreased NA activity in the OB, but 5-HT activity increased only in males. Since preference for the maternal odor involves the synergic action of NA and 5-HT in the OB, the maintenance of the behavior in RH males could be related to the increased 5-HT activity, in spite of reduction in the NA activity in the OB. RH did not alter CREB phosphorylation in the OB of both male and females compared with NH pups. The repeated handling procedure can affect the behavior of rat pups in response to the maternal odor and biochemical parameters related to the olfactory learning mechanism. Sex differences were already detected in 7-day-old pups. Although the responsiveness of the hypothalamic-pituitary-adrenal axis to stressors is reduced in the neonatal period, environmental interventions may impact behavioral and biochemical mechanisms relevant to the animal at that early age. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The dorsal premammillary nucleus (PMd) has a critical role on the expression of defensive responses to predator odor. Anatomical evidence suggests that the PMd should also modulate memory processing through a projecting branch to the anterior thalamus. By using a pharmacological blockade of the PMd with the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5), we were able to confirm its role in the expression of unconditioned defensive responses, and further revealed that the nucleus is also involved in influencing associative mechanisms linking predatory threats to the related context. We have also tested whether olfactory fear conditioning, using coffee odor as CS, would be useful to model predator odor. Similar to cat odor, shock-paired coffee odor produced robust defensive behavior during exposure to the odor and to the associated context. Shock-paired coffee odor also up-regulated Fos expression in the PMd, and, as with cat odor, we showed that this nucleus is involved in the conditioned defensive responses to the shock-paired coffee odor and the contextual responses to the associated environment. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Olfactory sensory neurons are able to detect odorants with high sensitivity and specificity. We have demonstrated that Ric-8B, a guanine nucleotide exchange factor (GEF), interacts with G alpha olf and enhances odorant receptor signaling. Here we show that Ric-8B also interacts with G gamma 13, a divergent member of the G gamma subunit family which has been implicated in taste signal transduction, and is abundantly expressed in the cilia of olfactory sensory neurons. We show that G beta 1 is the predominant GP subunit expressed in the olfactory sensory neurons. Ric-8B and G beta 1, like G alpha olf and G gamma 13, are enriched in the cilia of olfactory sensory neurons. We also show that Ric-8B interacts with G alpha olf in a nucleotide dependent manner, consistent with the role as a GEF. Our results constitute the first example of a GEF protein that interacts with two different olfactory G protein subunits and further implicate Ric-8B as a regulator of odorant signal transduction. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Standardized olfactory tests are now available to quantitatively assess disorders of olfaction. A Brazilian-Portuguese version of the University of Pennsylvania Smell Identification Test (UPSIT) is currently being developed specifically for the Brazilian population. The most recent Brazilian-Portuguese version of the UPSIT (UPSIT-Br2) was administered to 88 Brazilian subjects who had no history of neurological or otorhinolaryngological disease. UPSIT-Br2 scores decreased with age, were lower in men than in women, and were lower in subjects with lower income. The degree to which the poorer performance of subjects with lower socio-economic status reflects lack of familiarity with test items is not known. Although this version of the UPSIT provides a sensitive and useful test of smell function for the Brazilian population, a revision of some test items is needed to achieve comparable norms to those found using the North American UPSIT in the United States.
Resumo:
National Science Foundation NSF IBN[0316697]
Resumo:
Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range.
Resumo:
Background: The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. Methodology: Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 angstrom resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. Conclusion: The structure of AaegOBP1 (= AaegOBP39) shares the common fold of insect OBPs with six alpha-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this ""lid"" may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.
Resumo:
Taste receptors for sweet, bitter and umami tastants are G-protein-coupled receptors (GPCRs). While much effort has been devoted to understanding G-protein-receptor interactions and identifying the components of the signalling cascade downstream of these receptors, at the level of the G-protein the modulation of receptor signal transduction remains relatively unexplored. In this regard a taste-specific regulator of G-protein signaling (RGS), RGS21, has recently been identified. To study whether guanine nucleotide exchange factors (GEFs) are involved in the transduction of the signal downstream of the taste GPCRs we investigated the expression of Ric-8A and Ric-8B in mouse taste cells and their interaction with G-protein subunits found in taste buds. Mammalian Ric-8 proteins were initially identified as potent GEFs for a range of G alpha subunits and Ric-8B has recently been shown to amplify olfactory signal transduction. We find that both Ric-8A and Ric-8B are expressed in a large portion of taste bud cells and that most of these cells contain IP3R-3 a marker for sweet, umami and bitter taste receptor cells. Ric-8A interacts with G alpha-gustducin and G alpha i2 through which it amplifies the signal transduction of hTas2R16, a receptor for bitter compounds. Overall, these findings are consistent with a role for Ric-8 in mammalian taste signal transduction.