26 resultados para octahedral tilting

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of cis-[RuCl(2)(P-P)(N-N)] type complexes (P-P = 1,4-bis(diphenylphosphino)butane or (1,1`-diphenylphosphino)ferrocene; N-N = 2,2`-bipyridine or 1,10-phenantroline) with monodentate ligands (L), such as 4-methylpyridine, 4-phenylpyridine and benzonitrile forms [RuCl(L)(P-P)(N-N)](+) species Upon characterization of the isolated compounds by elemental analysis, (31)P{(1)H} NMR and X-ray crystallography it was found out that the type of the L ligand determines its position in relation to the phosphorus atom. While pyridine derivatives like 4-methylpyridine and 4-phenylpyridine coordinate trans to the phosphorus atom, the benzonitrile ligand (bzCN), a good pi acceptor, coordinates trans to the nitrogen atom. A (31)P{(1)H} NMR experiment following the reaction of the precursor cis-[RuCl(2)(dppb)(phen)] with the benzonitrile ligand shows that the final position of the entering ligand in the complex is better defined as a consequence of the competitive effect between the phosphorus atom and the cyano-group from the benzonitrile moiety and not by the trans effect. In this case, the benzonitrile group is stabilized trans to one of the nitrogen atoms of the N-N ligand. A differential pulse voltammetry experiment confirms this statement. In both experiments the [RuCl(bzCN)(dppb)(phen)]PF(6) species with the bzCN ligand positioned trans to a phosphorus atom of the dppb ligand was detected as an intermediate complex. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two coordination octahedral Sn(IV) complexes [Sn(L)(2)] and cis-[SnCl(2)(L)(dmso)], where H(2)L is 2-hydroxyacetophenone (S-benzydithiocarbazate), were prepared and characterized by elemental analysis, IR, NMR ((1)H, (13)C), (119)Sn Mossbauer spectroscopies and X-ray diffraction techniques to investigate their structural properties. Both crystallize in the Monoclinic system, with parameters: a = 8.1905(3), b = 30.8811(15), c = 12.8959(7) angstrom, beta = 94.465(3)degrees and Z = 4 for [Sn(L)(2)] and a = 8.5247(2), b = 21.5445(7), c = 12.3706(3) angstrom, beta = 96.932(2)degrees and Z = 4 for cis-[SnCl(2)(L)(dmso)]. In both complexes, the Sn(IV) central atom is coordinated in a distorted octahedral geometry with the thiolate ligand (L(2-)) coordinated via O, N and S atoms. The (119)Sn Mossbauer spectroscopy of the complexes were studied and the results revealed that both complexes posses isomer shift (delta) and quadrupole splitting (Delta), which are almost the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of when a direct limit of tilting modules is still a tilting module.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let G be any of the (binary) icosahedral, generalized octahedral (tetrahedral) groups or their quotients by the center. We calculate the automorphism group Aut(G).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the existence of tilting modules which are direct limits of finitely generated tilting modules over tilted algebras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples of Araucaria area soil from Parana state, Brazil, were separated by particle size fractionation and investigated by electron paramagnetic resonance (EPR) in X-Band of 9.5 GHz at room temperature and 77K, infra-red spectroscopy and X-ray diffractometry. The paramagnetic species in the soil samples were identified by comparison with EPR spectra of some minerals studied recently by our group, several soil types and/or soil components investigated in the literature. The value of g = 2.1 (Delta H = 85 mT) indicated the presence of ferrihydrite. Hematite was identified by g = 2.1 (Delta H = 100 mT) and g = 4.3 for Fe(3+) lines of the concentrated dominium and diluted dominium. Kaolinite was identified by IR and EPR with the resonance at g = 4.3 attributed to Fe(3+) ions in isolated sites of tetrahedral and octahedral symmetry with rhombic distortion. The resonances at g = 3.7 and g = 4.9 were attributed to Fe(3+) in more highly symmetrical environment than rhombic symmetry, but not in axial symmetry. Three signals around g = 2 were attributed to radiation defects, plus additional resonances at g = 2.8 and 9.0. Signals less intense than those at g = 2.1, 3.7, and 6.5, observed for clear grains of soil, were attributed to presence of Fe(3+) in quartz which was identified by IR and XDR. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

5-(4-(N-tert-Butyl-N-aminoxylphenyl)) pyrimidine (RL, 4PPN) forms crystallographically isostructural and isomorphic pseudo-octahedral M(RL)(2)(hfac)(2) complexes with M(hfac)(2), M = Zn, Cu, Ni, Co, and Mn. Multiple close contacts occur between sites of significant spin density of the organic radical units. Magnetic behavior of the Zn, Cu, Ni, Co complexes appears to involve multiple exchange pathways, with multiple close crystallographic contacts between sites that EPR (of 4PPN) indicates to have observable spin density. Powder EPR spectra at room temperature and low temperature are reported for each complex. Near room temperature, the magnetic moments of the complexes are roughly equal to those expected by a sum of non-interacting moments (two radicals plus ion). As temperature decreases, AFM exchange interactions become evident in all of the complexes. The closest fits to the magnetic data were found for a 1-D Heisenberg AFM chain model in the Zn(II) complex (J/k = (-)7 K), and for three-spin RL-M-RL exchange in the other complexes (J/k = (-)26 K, (-)3 K, (-) 6 K, for Cu(II), Ni(II), and Co(II) complexes, respectively). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoluminescence, electron paramagnetic resonance and optical absorption properties of rhodonite, a natural silicate mineral, have been investigated and compared to those of synthetic crystal, pure and doped. The TL peaks grow linearly for radiation dose up to 4 kGy, and then saturate. In all the synthetic samples, 140 and 340 degrees C TL peaks are observed; the difference occurs in their relative intensities, but only 340 degrees C peak grows strongly for high doses. Al(2)O(3) and Al(2)O(3) + CaO-doped synthetic samples presented several decades intenser TL compared to that of synthetic samples doped with other impurities. A heating rate of 4 degrees C/s has been used in all the TL readings. The EPR spectrum of natural rhodonite mineral has only one huge signal around g = 2.0 with width extending from 1,000 to 6,000 G. This is due to Mn dipolar interaction, a fact proved by numerical calculation based on Van Vleck dipolar broadening expression. The optical absorption spectrum is rich in absorption bands in near-UV, visible and near-IR intervals. Several bands in the region from 540 to 340 nm are interpreted as being due to Mn(3+) in distorted octahedral environment. A broad and intense band around 1,040 nm is due to Fe(2+). It decays under heating up to 900 degrees C. At this temperature it is reduced by 80% of its original intensity. The pink, natural rhodonite, heated in air starts becoming black at approximately 600 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optical absorption spectra of two samples of grossular have been measured at room temperature. An intense charge transfer band (UVCT) of iron extends to the visible and near infrared region. Some peaks associated to Fe3+ ions in tetrahedral and octahedral positions have been identified and their energy levels were computed. Mn2+ and Fe2+ ions are responsible with some bands and probably these ions occupy dodecahedral positions. No change in the intensity of optical absorption spectra were found after gamma dose, but only the 505 nm band decreases with irradiation. The OH spectra, consisting of OH overtones at 2750nm and asymmetric OH bands in the near infrared region were observed in the two samples. The heat treatment produces Fe2+ -> Fe3+ and Mn2+ -> Mn3+ by oxidation. This last was observed in sample II only. The thermally stimulated luminescence of both grossular samples has been investigated. Due to differences in iron and manganese concentration, not only a large difference has been observed in their optical absorption behavior, but also a striking difference in their thermoluminescent behavior. Actually, it is not clear whether other impurities such as Ti, Na and K that are present in quite different concentration in grossular I and II are also contributing to the thermoluminescenct properties of both samples. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructural beta-nickel hydroxide (beta-Ni(OH)(2)) plates were prepared using the microwave hydrothermal (MH) method at a low temperature and short reaction times. An ammonia solution was employed as the coordinating agent, which reacts with [Ni(H(2)O)(6)](2+) to control the growth of beta-Ni(OH)(2) nuclei. A trigonal beta-Ni(OH)(2) single phase was observed by X-ray diffraction (XRD) analyses, and the crystal cell was constructed with structural parameters and atomic coordinates obtained from Rietveld refinement. Field emission scanning electron microscopy (FE-SEM) images revealed that the samples consisted of hexagonal-shaped nanoplates with a different particle size distribution. Broad absorption bands assigned as transitions of Ni(2+) in oxygen octahedral sites were revealed by UV-vis spectra. Photoluminescence (PL) properties observed with a maximum peak centered in the blue-green region were attributed to different defects, which were produced during the nucleation process. We present a growth process scheme of the beta-Ni(OH)(2) nanoplates. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bismuth germanate glasses are interesting materials due to their physical properties and their unique structural characteristics caused by the coordination changes of bismuth and germanium atoms. Glasses of the bismuth germanate system were prepared by melting/molding method and were investigated concerning their thermal and structural properties. The structural analysis of the samples was carried out by micro-Raman and Fourier transform infrared spectroscopes. It was observed that the glass structure is formed basically by GeO(4) tetrahedral units also having the formation of the GeO(6) octahedral units. BiO(2) was considered a network former by observing the presence of octahedral BiO(6) and pyramidal BiO(3) groups in the local structure of the samples. An absorption band observed at 1103 cm(-1) in the IR spectrum of the undoped glass was attributed to the Bi-O-Ge and/or Bi-O-Bi linkage vibration. The said band shifted to lower wavenumbers after the CeO(2) addition thus reflecting changes in the glass network. Cerium oxide was an efficient oxidant agent to prevent the darkening of the glasses which was probably associated to the reduction of Bi ions. However, CeO(2) was incorporated as a local network modifier in the glass structure even at concentrations of 0.2 mol%. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dinuclear ruthenium(II) complex double-bridged by an N-aromatic ligand 2-mercaptopyridine (2-pyridinethiol or 2-pyridyl mercaptan) and a methyl sulfoxide (dmso) have been characterized by X-ray crystallography. The reported compound with formula [Ru(2)Cl(3) (mu-pyS)(mu-dmso)(dmso)(4)] center dot 2H(2)O, [C(15)H(36)Cl(3)NO(7)S(6)Ru(2)] (P2/c, a = 13.8175(2) angstrom, b = 10.5608(2) angstrom, c = 21.3544 (3) angstrom, beta = 106.090(1)degrees, V = 2,994.05(8) angstrom(3), Z = 4) represents a seven-membered ring system with both rutheniums in an octahedral geometry. All the hydrogen bonds (C-H-Cl) and the van der Waals contacts give rise to three-dimensional network in the structure and add stability to the dinuclear compound. To our knowledge, this is the first time that the formation of a dinuclear ruthenium(II) complex double-bridged by an N-aromatic ligand 2-mercaptopyridine and dmso have been reported. The study also provided valuable insight into bioinorganic chemistry as continuing efforts are being made to develop metal-based cancer chemotherapeutics. A major feature of this paper is the resolution of a double bridged ruthenium structure which contributes to a better understanding of ruthenium reactivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2-Benzoylpyridine-phenylhydrazone (H2BzPh), 2-benzoylpyridine-para-chloro-phenylhydrazone (H2BzpClPh), and 2-benzoylpyridine-para-nitro-phenyl (H2BzpNO(2)Ph) hydrazone were obtained and fully characterized, as well as their zinc(II) complexes [Zn(H2BzPh)Cl(2)] (1), [Zn(H2BzClPh)Cl(2)] (2) and [Zn(H2BzpNO(2)Ph)Cl(2)] (3). During the syntheses of complex 1 a second product crystallized, which was characterized as [Zn(2BzPh)(2)] (1a). Upon re-crystallization in 1: 9 DMSO: acetone conversion of 2 into [Zn(H2BzpClPh)Cl2] center dot H(2)O (2a) and of 3 into [Zn(2BzpNO(2)Ph)Cl(DMSO)] (3a) occurred. The crystal structures of 1a, 2a and 3a were determined. In 1a the two nearly perpendicular H2BzPh ligands give rise to a distorted octahedral environment around the metal. The 5-fold coordination around the metal is completed with two chloride ions in 2a and with one chloride and one oxygen atom from DMSO in 3a. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of more efficient anti-tuberculosis drugs is of interest. Three oxovanadium(IV) and three cis-dioxovanadium(V) complexes with thiosemicarbazone derivatives bearing moieties with different lipophilicity have been prepared and had their inhibitory activity against Mycobacterium tuberculosis H(37)Rv ATCC 27294 evaluated. The analytical methods used by the complexes` characterization included IR, EPR, (1)H, (13)C and (51)V NMR spectroscopies, elemental analysis, cyclic voltammetry, magnetic susceptibility measurement and single crystal X-ray diffractometry. [VO(acac)(aptsc)], [VO(acac)(apmtsc)] and [VO(acac)(apptsc)] (acac = acetylacetonate; Haptsc = 2-acetylpyridinethiosemicarbazone; Hapmtsc = 2-acetylpyridine-N(4)-methyl-thiosemicarbazone and Happtsc = 2-acetylpyridine-N(4)-phenyl-thiosemicarbazone) are paramagnetic and their EPR spectra are consistent with the monoanionic N,N,S-tridentate coordination of the thiosemicarbazone ligands, resulting in octahedral structures of rhombic symmetry and with the oxidation state +IV for the vanadium atom. As result of oxidation of the vanadium(IV) complexes above, the diamagnetic cis-dioxovanadium(V) complexes [VO(2)(aptsc)[, [VO(2)(apmtsc)[ and [VO(2)(apptsc)] are formed. Their (1)H, (13)C and (51)V NMR spectra were acquired and support a distorted square pyramidal geometry for them, in accord with the solid state X-ray structures determined for [VO(2)(aptsc)] and [VO(2)(apmtsc)]. In general, the vanadium compounds show comparable or larger anti-M. tuberculosis activities than the free thiosemicarbazone ligands, with MIC values within 62.5-1.56 (mu g/mL). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel rhenium complexes containing the maltolate (mal) or kojate (koj) anions as chelating ligands have been synthesized: [ReOCl(mal)(2)] (1), [ReOCl(2)(mal)(PPh(3))] (2), [ReOBr(2)(mal)(PPh(3))] (3), [ReOCl2(koj)(PPh(3))] (4) and [ReOBr(2)(koj)(PPh(3))] (5). The products have been characterized by MR, (1)H, (13)C, and (31)P NMR spectroscopies and elemental analysis. The crystal and molecular structures of all complexes were determined. Complex I crystallizes monoclinic, space group C2/c, Z = 8. It contains two O, O`-bidentate maltolate ligands and one chloro ligand at the (ReO)(3+) unit, so that a distorted octahedral geometry is adopted by the six-coordinated rhenium(V) center. The chloro ligand occupies a cis position to the oxo ligand. Complexes 2 and 3 are isostructural and crystallize orthorhombic, space group Pbca and Z = 8. The isostructural complexes 4 and 5 crystallize monoclinic, space group P2(1)/n and Z = 4. In complexes 2-5, the (ReO)(3+) unit is coordinated by a monoanionic O,O-bidentate unit of the maltolate (2 and 3) or kojate (41 and 5) ligand, one triphenylphosphine and two halogeno ligands (Cl in 2 and 4; Br in 3 and 5), with the rhenium(V) center in a distorted octahedral environment. The halide ligands are in cis positions to each other. (c) 2008 Elsevier Ltd. All rights reserved.