6 resultados para numerical modeling
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this paper, the laminar fluid flow of Newtonian and non-Newtonian of aqueous solutions in a tubular membrane is numerically studied. The mathematical formulation, with associated initial and boundary conditions for cylindrical coordinates, comprises the mass conservation, momentum conservation and mass transfer equations. These equations are discretized by using the finite-difference technique on a staggered grid system. Comparisons of the three upwinding schemes for discretization of the non-linear (convective) terms are presented. The effects of several physical parameters on the concentration profile are investigated. The numerical results compare favorably with experimental data and the analytical solutions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The scavenging processes of chemical species have been previously studied with numerical modeling, in order to understand the gas and particulate matter intra-reservoir transferences. In this study, the atmospheric (RAMS) and scavenging (B.V.2) models were used, in order to simulate sulfate concentrations in rainwater using scavenging processes as well as the local atmospheric conditions obtained within the LBA Project in the State of Rondonia, during a dry-to-wet transition season. Two case studies were conducted. The RAMS atmospheric simulation of these events presented satisfactory results, showing the detailed microphysical processes of clouds in the Amazonian region. On the other hand, with cloud entrainments, observed values have been overestimated. Modeled sulfate rainwater concentration, using exponential decay and cloud heights of 16 km and no entrainments, presented the best results, reaching 97% of the observed value. The results, using shape parameter 5, are the best, improving the overall result. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A study of the potential role of aerosols in modifying clouds and precipitation is presented using a numerical atmospheric model. Measurements of cloud condensation nuclei (CCN) and cloud size distribution properties taken in the southwestern Amazon region during the transition from dry to wet seasons were used as guidelines to define the microphysical parameters for the simulations. Numerical simulations were carried out using the Brazilian Development on Regional Atmospheric Modeling System, and the results presented considerable sensitivity to changes in these parameters. High CCN concentrations, typical of polluted days, were found to result in increases or decreases in total precipitation, depending on the level of pollution used as a reference, showing a complexity that parallels the aerosol-precipitation interaction. Our results show that on the grids evaluated, higher CCN concentrations reduced low-to-moderate rainfall rates and increased high rainfall rates. The principal consequence of the increased pollution was a change from a warm to a cold rain process, which affected the maximum and overall mean accumulated precipitation. Under polluted conditions, cloud cover diminished, allowing greater amounts of solar radiation to reach the surface. Aerosol absorption of radiation in the lower layers of the atmosphere delayed convective evolution but produced higher maximum rainfall rates due to increased instability. In addition, the intensity of the surface sensible heat flux, as well as that of the latent heat flux, was reduced by the lower temperature difference between surface and air, producing greater energy stores at the surface.
Resumo:
We present a new technique for obtaining model fittings to very long baseline interferometric images of astrophysical jets. The method minimizes a performance function proportional to the sum of the squared difference between the model and observed images. The model image is constructed by summing N(s) elliptical Gaussian sources characterized by six parameters: two-dimensional peak position, peak intensity, eccentricity, amplitude, and orientation angle of the major axis. We present results for the fitting of two main benchmark jets: the first constructed from three individual Gaussian sources, the second formed by five Gaussian sources. Both jets were analyzed by our cross-entropy technique in finite and infinite signal-to-noise regimes, the background noise chosen to mimic that found in interferometric radio maps. Those images were constructed to simulate most of the conditions encountered in interferometric images of active galactic nuclei. We show that the cross-entropy technique is capable of recovering the parameters of the sources with a similar accuracy to that obtained from the very traditional Astronomical Image Processing System Package task IMFIT when the image is relatively simple (e. g., few components). For more complex interferometric maps, our method displays superior performance in recovering the parameters of the jet components. Our methodology is also able to show quantitatively the number of individual components present in an image. An additional application of the cross-entropy technique to a real image of a BL Lac object is shown and discussed. Our results indicate that our cross-entropy model-fitting technique must be used in situations involving the analysis of complex emission regions having more than three sources, even though it is substantially slower than current model-fitting tasks (at least 10,000 times slower for a single processor, depending on the number of sources to be optimized). As in the case of any model fitting performed in the image plane, caution is required in analyzing images constructed from a poorly sampled (u, v) plane.
Resumo:
The fluid flow of the liquid phase in the sol-gel-dip-coating process for SnO(2) thin film deposition is numerically simulated. This calculation yields useful information on the velocity distribution close to the substrate, where the film is deposited. The fluid modeling is done by assuming Newtonian behavior, since the linear relation between shear stress and velocity gradient is observed. Besides, very low viscosities are used. The fluid governing equations are the Navier-Stokes in the two dimensional form, discretized by the finite difference technique. Results of optical transmittance and X-ray diffraction on films obtained from colloidal suspensions with regular viscosity, confirm the substrate base as the thickest part of the film, as inferred from the numerical simulation. In addition, as the viscosity increases, the fluid acquires more uniform velocity distribution close to the substrate, leading to more homogenous and uniform films.
Resumo:
We report in this work the study of the interaction between formic acid and an oxidized platinum surface under open circuit conditions. The investigation was carried out with the aid of in situ infrared spectroscopy, and results analyzed in terms of a mathematical model and numerical simulations. It has been found that during the first seconds of the interaction a small amount of CO(2) is produced and absolutely no adsorbed CO was observed. A sudden drop in potential then follows, which is accompanied by a steep increase first of CO(2) production and then by adsorbed CO. The steep transient was rationalized in terms of an autocatalytic production of free platinum sites which enhances the overall rate of reaction. Modeling and simulation showed nearly quantitative agreement with the experimental observations and provided further insight into some experimentally inaccessible variables such as surface free sites. Finally, based on the understanding provided from the combined experimental and theoretical approach, we discuss the general aspects influencing the open circuit transient.