3 resultados para nonstandard-model Higgs bosons

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an alternative formulation of the Standard Model which reduces the number of free parameters. In our framework, fermionic fields are assigned to fundamental representations of the Lorentz and the internal symmetry groups, whereas bosonic field variables transform as direct products of fundamental representations of all symmetry groups. This allows us to reduce the number of fundamental symmetries. We formulate the Standard Model by considering the SU(3) and SU(2) symmetry groups as the underlying symmetries of the fundamental interactions. This allows us to suggest a model, for the description of the interactions of the intermediate bosons among themselves and interactions of fermions, that makes use of just two parameters. One parameter characterizes the symmetric phase, whereas the other parameter (the asymmetry parameter) gives the breakdown strength of the symmetries. All coupling strengths of the Standard Model are then derived in terms of these two parameters. In particular, we show that all fermionic electric charges result from symmetry breakdown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of Fock space representation is developed to deal with stochastic spin lattices written in terms of fermion operators. A density operator is introduced in order to follow in parallel the developments of the case of bosons in the literature. Some general conceptual quantities for spin lattices are then derived, including the notion of generating function and path integral via Grassmann variables. The formalism is used to derive the Liouvillian of the d-dimensional Linear Glauber dynamics in the Fock-space representation. Then the time evolution equations for the magnetization and the two-point correlation function are derived in terms of the number operator. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform an analysis of the electroweak precision observables in the Lee-Wick Standard Model. The most stringent restrictions come from the S and T parameters that receive important tree level and one loop contributions. In general the model predicts a large positive S and a negative T. To reproduce the electroweak data, if all the Lee-Wick masses are of the same order, the Lee-Wick scale is of order 5 TeV. We show that it is possible to find some regions in the parameter space with a fermionic state as light as 2.4-3.5 TeV, at the price of rising all the other masses to be larger than 5-8 TeV. To obtain a light Higgs with such heavy resonances a fine-tuning of order a few per cent, at least, is needed. We also propose a simple extension of the model including a fourth generation of Standard Model fermions with their Lee-Wick partners. We show that in this case it is possible to pass the electroweak constraints with Lee-Wick fermionic masses of order 0.4-1.5 TeV and Lee-Wick gauge masses of order 3 TeV.