2 resultados para natural fibres

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present work was to evaluate the effects of 14 years of weathering exposition on the microstructure and mineral composition of cementitious roofing tiles, still in service, reinforced with fique fibres (Furcrae gender). The results show that tiles under weathering exposition presented higher water absorption and apparent void volume than tiles under laboratory exposition. The continuous hydration of cement and natural carbonation filled the smaller pores but contrarily the large pores remained in the porous fibre to matrix interface in the samples exposed to weathering. On the other hand, their microstructure presented lower air permeability than samples aged in the internal environment of the laboratory. Besides, in the weathering aged tiles takes place a more intensive hydration process as it was identified greater amount of hydrated phases than in the laboratory aged specimens. The present results contribute to understanding the consequences of tropical weathering on the fibre-cement degradation. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present work is to evaluate the effects of the surface properties of unrefined eucalyptus pulp fibres concerning their performance in cement-based composites. The influence of the fibre surface on the microstructure of fibre-cement composites was evaluated after accelerated ageing cycles, which simulate natural weathering. The surface of unbleached pulp is a thin layer that is rich in cellulose, lignin, hemicelluloses, and extractives. Such a layer acts as a physical and chemical barrier to the penetration of low molecular components of cement. The unbleached fibres are less hydrophilic than the bleached ones. Bleaching removes the amorphous lignin and extractives from the surface and renders it more permeable to liquids. Atomic force microscopy (AFM) helps in understanding the fibre-cement interface. Bleaching improved the fibre- cement interfacial bonding, whereas fibres in the unbleached pulp were less susceptible to the re-precipitation of cement hydration products into the fibre cavities (lumens). Therefore, unbleached fibres can improve the long-term performance of the fibre-cement composite owing to their delayed mineralization.