2 resultados para nanoribbon

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of certain kinds of defects at the edges of monohydrogenated zigzag graphene nanoribbons changes dramatically the charge transport properties inducing a spin-polarized conductance. Using an approach based on density functional theory and nonequilibrium Green`s function formalism to calculate the transmittance, we classify the defects in different classes depending on their distinct transport properties: (i) sigma-defects, which do not affect the transmittance close to the Fermi energy (E(F)); and (ii) pi-defects, which cause a spin polarization of the transmittance and that can be further divided into either electron or hole defects if the spin transport polarization results in larger transmittance for the up or down spin channel, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the transport properties (IxV curves and zero bias transmittance) of pristine graphene nanoribbons (GNRs) as well as doped with boron and nitrogen using an approach that combines nonequilibrium Green`s functions and density functional theory (DFT) [NEGF-DFT]. Even for a pristine nanoribbon we verify a spin-filter effect under finite bias voltage when the leads have an antiparallel magnetization. The presence of the impurities at the edges of monohydrogenated zigzag GNRs changes dramatically the charge transport properties inducing a spin-polarized conductance. The IxV curves for these systems show that depending on the bias voltage the spin polarization can be inverted. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1379-1386, 2011