207 resultados para multivariate statistical analysis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Objective: The aim of this article is to propose an integrated framework for extracting and describing patterns of disorders from medical images using a combination of linear discriminant analysis and active contour models. Methods: A multivariate statistical methodology was first used to identify the most discriminating hyperplane separating two groups of images (from healthy controls and patients with schizophrenia) contained in the input data. After this, the present work makes explicit the differences found by the multivariate statistical method by subtracting the discriminant models of controls and patients, weighted by the pooled variance between the two groups. A variational level-set technique was used to segment clusters of these differences. We obtain a label of each anatomical change using the Talairach atlas. Results: In this work all the data was analysed simultaneously rather than assuming a priori regions of interest. As a consequence of this, by using active contour models, we were able to obtain regions of interest that were emergent from the data. The results were evaluated using, as gold standard, well-known facts about the neuroanatomical changes related to schizophrenia. Most of the items in the gold standard was covered in our result set. Conclusions: We argue that such investigation provides a suitable framework for characterising the high complexity of magnetic resonance images in schizophrenia as the results obtained indicate a high sensitivity rate with respect to the gold standard. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE: The main goal of this study was to develop and compare two different techniques for classification of specific types of corneal shapes when Zernike coefficients are used as inputs. A feed-forward artificial Neural Network (NN) and discriminant analysis (DA) techniques were used. METHODS: The inputs both for the NN and DA were the first 15 standard Zernike coefficients for 80 previously classified corneal elevation data files from an Eyesys System 2000 Videokeratograph (VK), installed at the Departamento de Oftalmologia of the Escola Paulista de Medicina, São Paulo. The NN had 5 output neurons which were associated with 5 typical corneal shapes: keratoconus, with-the-rule astigmatism, against-the-rule astigmatism, "regular" or "normal" shape and post-PRK. RESULTS: The NN and DA responses were statistically analyzed in terms of precision ([true positive+true negative]/total number of cases). Mean overall results for all cases for the NN and DA techniques were, respectively, 94% and 84.8%. CONCLUSION: Although we used a relatively small database, results obtained in the present study indicate that Zernike polynomials as descriptors of corneal shape may be a reliable parameter as input data for diagnostic automation of VK maps, using either NN or DA.
Resumo:
In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e. g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of fluctuations. These results, even though preliminary and restricted to very specific conditions, show that the physical properties of turbulence in collisionless plasmas, as those found in the ICM, may be very different from what has been largely believed.
Resumo:
The aim objective of this project was to evaluate the protein extraction of soybean flour in dairy whey, by the multivariate statistical method with 2(3) experiments. Influence of three variables were considered: temperature, pH and percentage of sodium chloride against the process specific variable ( percentage of protein extraction). It was observed that, during the protein extraction against time and temperature, the treatments at 80 degrees C for 2h presented great values of total protein (5.99%). The increasing for the percentage of protein extraction was major according to the heating time. Therefore, the maximum point from the function that represents the protein extraction was analysed by factorial experiment 2(3). By the results, it was noted that all the variables were important to extraction. After the statistical analyses, was observed that the parameters as pH, temperature, and percentage of sodium chloride, did not sufficient for the extraction process, since did not possible to obtain the inflection point from mathematical function, however, by the other hand, the mathematical model was significant, as well as, predictive.
Resumo:
The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
The main goal of this work was to evaluate thermodynamic parameters of the soybean oil extraction process using ethanol as solvent. The experimental treatments were as follows: aqueous solvents with water contents varying from 0 to 13% (mass basis) and extraction temperature varying from 50 to 100 degrees C. The distribution coefficients of oil at equilibrium have been used to calculate enthalpy, entropy and free energy changes. The results indicate that oil extraction process with ethanol is feasible and spontaneous, mainly under higher temperature. Also, the influence of water level in the solvent and temperature were analysed using the response surface methodology (RSM). It can be noted that the extraction yield was highly affected by both independent variables. A joint analysis of thermodynamic and RSM indicates the optimal level of solvent hydration and temperature to perform the extraction process.
Resumo:
In order to improve our understanding of climate change, the aim of this research project was to study the climatology and the time trends of drizzle and fog events in the Sao Paulo Metropolitan Area, and the possible connections of this variability with the sea surface temperature (SST) of the Atlantic and Pacific Oceans. The climatology of both phenomena presents differences and similarities. Fog shows a marked maximum frequency in winter and a minimum frequency in summer, while the seasonal differences of drizzle occurrence are less pronounced, there is a maximum in spring, whereas the other seasons present smaller and similar numbers of events. Both phenomena present a negative trend from 1933 to 2005 which is stronger for fog events. A multivariate statistical analysis indicates that the South Atlantic SST could increase warm temperature advection to the continent. This could be one of the responsible factors for the negative tendency in the number of both fog and drizzle events.
Resumo:
The use of inter-laboratory test comparisons to determine the performance of individual laboratories for specific tests (or for calibration) [ISO/IEC Guide 43-1, 1997. Proficiency testing by interlaboratory comparisons - Part 1: Development and operation of proficiency testing schemes] is called Proficiency Testing (PT). In this paper we propose the use of the generalized likelihood ratio test to compare the performance of the group of laboratories for specific tests relative to the assigned value and illustrate the procedure considering an actual data from the PT program in the area of volume. The proposed test extends the test criteria in use allowing to test for the consistency of the group of laboratories. Moreover, the class of elliptical distributions are considered for the obtained measurements. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report a statistical analysis of Doppler broadening coincidence data of electron-positron annihilation radiation in silicon using a (22)Na source. The Doppler broadening coincidence spectrum was fit using a model function that included positron annihilation at rest with 1s, 2s, 2p, and valence band electrons. In-flight positron annihilation was also fit. The response functions of the detectors accounted for backscattering, combinations of Compton effects, pileup, ballistic deficit, and pulse-shaping problems. The procedure allows the quantitative determination of positron annihilation with core and valence electron intensities as well as their standard deviations directly from the experimental spectrum. The results obtained for the core and valence band electron annihilation intensities were 2.56(9)% and 97.44(9)%, respectively. These intensities are consistent with published experimental data treated by conventional analysis methods. This new procedure has the advantage of allowing one to distinguish additional effects from those associated with the detection system response function. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The present study aimed investigate the age and gender influence on maximal molar bite force and at outlining the criteria for normal masticatory muscle development in a sample of 177 Brazilian Caucasian dentate individuals aged 7-80 years divided into five age groups: I(7-12 years), II (13-20 years), III (21-40 years), IV (41-60 years), and V (61-80 years). Except for Group V, which comprised nine women and eight men, all groups were equally divided in respect to gender (20 M/20 F). Bite force was recorded with a mouth-adapted 1000 N dynamometer and the highest out of three records was regarded as the maximal bite force. The data were submitted to multivariate statistical analysis (SPSS 17.0 p < 0.05). Effects of group and gender were found, but no interactions between them. The ANOVA showed significant differences between groups bilaterally. Bonferroni`s test showed that group I had significantly lower bite force means at both sides as compared to all groups, except group V. No differences were found between the left and right sides. In all the groups, gender was found to be a significant factor associated with maximal bite force. A global comparison including all the subjects and measures showed that the means of men were approximately 30% higher than those of women, within-group comparisons yielded similar results in all groups. Muscle thickness was measured with a SonoSite Titan ultrasound tool using a high-resolution real-time 56 mm/10 MHz linear-array transducer. Three ultrasound images were obtained from the bilateral masseter and temporal muscles at rest and at maximal voluntary contraction. The means of the three measures in each clinical condition were analyzed with multivariate statistical analysis (SPSS 17.0 p < 0.05). A gradual increase in thickness of the masseter and temporal muscles was found both at rest and maximal voluntary contraction for groups I to IV, whereas a decrease in muscle thickness was observed in group V. Multivariate analysis showed that in both conditions there was an effect of group and gender. The study of the development of the stomatognathic system in relation to age and gender can provide useful data for the identification of normal and impaired functioning patterns. The results of this study indicate that age and gender are associated with structural and functional alterations in the muscles of the stomatognathic system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Breast weight has great economic importance in poultry industry, and may be associated with other variables. This work aimed to estimate phenotypic correlations between performance (live body weight at 7 and 28 days, and at slaughter, and depth of the breast muscle measured by ultrasonography), carcass (eviscerated body weight and leg weight) and body composition (heart, liver and abdominal fat weight) traits in a broiler line, and quantify the direct and indirect influence of these traits on breast weight. Path analysis was used by expanding the matrix of partial correlation in coefficients which give the direct influence of one trait on another, regardless the effect of the other traits. The simultaneous maintenance of live body weight at slaughter and eviscerated body weight in the matrix of correlations might be harmful for statistical analysis involving systems of normal equations, like path analysis, due to the observed multicollinearity. The live body weight at slaughter and the depth of the breast muscle as measured by ultrasonography directly affected breast weight and were identified as the most responsible factors for the magnitude of the correlation coefficients obtained between the studied traits and breast weight. Individual pre-selection for these traits could favor an increased breast weight in the future reproducer candidates of this line if the broilers' environmental conditions and housing are maintained, since the live body weight at slaughter and the depth of breast muscle measured by ultrasonography were directly related to breast weight.
Resumo:
Background: Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in humans. The average 5-year survival rate is one of the lowest among aggressive cancers, showing no significant improvement in recent years. When detected early, HNSCC has a good prognosis, but most patients present metastatic disease at the time of diagnosis, which significantly reduces survival rate. Despite extensive research, no molecular markers are currently available for diagnostic or prognostic purposes. Methods: Aiming to identify differentially-expressed genes involved in laryngeal squamous cell carcinoma (LSCC) development and progression, we generated individual Serial Analysis of Gene Expression (SAGE) libraries from a metastatic and non-metastatic larynx carcinoma, as well as from a normal larynx mucosa sample. Approximately 54,000 unique tags were sequenced in three libraries. Results: Statistical data analysis identified a subset of 1,216 differentially expressed tags between tumor and normal libraries, and 894 differentially expressed tags between metastatic and non-metastatic carcinomas. Three genes displaying differential regulation, one down-regulated (KRT31) and two up-regulated (BST2, MFAP2), as well as one with a non-significant differential expression pattern (GNA15) in our SAGE data were selected for real-time polymerase chain reaction (PCR) in a set of HNSCC samples. Consistent with our statistical analysis, quantitative PCR confirmed the upregulation of BST2 and MFAP2 and the downregulation of KRT31 when samples of HNSCC were compared to tumor-free surgical margins. As expected, GNA15 presented a non-significant differential expression pattern when tumor samples were compared to normal tissues. Conclusion: To the best of our knowledge, this is the first study reporting SAGE data in head and neck squamous cell tumors. Statistical analysis was effective in identifying differentially expressed genes reportedly involved in cancer development. The differential expression of a subset of genes was confirmed in additional larynx carcinoma samples and in carcinomas from a distinct head and neck subsite. This result suggests the existence of potential common biomarkers for prognosis and targeted-therapy development in this heterogeneous type of tumor.
Resumo:
The antioxidant activity of natural and synthetic compounds was evaluated using five in vitro methods: ferric reducing/antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydradzyl (DPPH), oxygen radical absorption capacity (ORAL), oxidation of an aqueous dispersion of linoleic acid accelerated by azo-initiators (LAOX), and oxidation of a meat homogenate submitted to a thermal treatment (TBARS). All results were expressed as Trolox equivalents. The application of multivariate statistical techniques suggested that the phenolic compounds (caffeic acid, carnosic acid, genistein and resveratrol), beyond their high antioxidant activity measured by the DPPH, FRAP and TBARS methods, showed the highest ability to react with the radicals in the ORAC methodology, compared to the other compounds evaluated in this study (ascorbic acid, erythorbate, tocopherol, BHT, Trolox, tryptophan, citric acid, EDTA, glutathione, lecithin, methionine and tyrosine). This property was significantly correlated with the number of phenolic rings and catecholic structure present in the molecule. Based on a multivariate analysis, it is possible to select compounds from different clusters and explore their antioxidant activity interactions in food products.
Resumo:
Hydrodynamic studies were conducted in a semi-cylindrical spouted bed column of diameter 150 mm, height 1000 mm, conical base included angle of 60 degrees and inlet orifice diameter 25 mm. Pressure transducers at several axial positions were used to obtain pressure fluctuation time series with 1.2 and 2.4 mm glass beads at U/U-ms from 0.3 to 1.6, and static bed depths from 150 to 600 mm. The conditions covered several flow regimes (fixed bed, incipient spouting, stable spouting, pulsating spouting, slugging, bubble spouting and fluidization). Images of the system dynamics were also acquired through the transparent walls with a digital camera. The data were analyzed via statistical, mutual information theory, spectral and Hurst`s Rescaled Range methods to assess the potential of these methods to characterize the spouting quality. The results indicate that these methods have potential for monitoring spouted bed operation.
Resumo:
This paper is part of a large study to assess the adequacy of the use of multivariate statistical techniques in theses and dissertations of some higher education institutions in the area of marketing with theme of consumer behavior from 1997 to 2006. The regression and conjoint analysis are focused on in this paper, two techniques with great potential of use in marketing studies. The objective of this study was to analyze whether the employement of these techniques suits the needs of the research problem presented in as well as to evaluate the level of success in meeting their premisses. Overall, the results suggest the need for more involvement of researchers in the verification of all the theoretical precepts of application of the techniques classified in the category of investigation of dependence among variables.