2 resultados para multiple data sources

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Precipitation and temperature climate indices are calculated using the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and validated against observational data from some stations over Brazil and other data sources. The spatial patterns of the climate indices trends are analyzed for the period 1961-1990 over South America. In addition, the correlation and linear regression coefficients for some specific stations were also obtained in order to compare with the reanalysis data. In general, the results suggest that NCEP/NCAR reanalysis can provide useful information about minimum temperature and consecutive dry days indices at individual grid cells in Brazil. However, some regional differences in the climate indices trends are observed when different data sets are compared. For instance, the NCEP/NCAR reanalysis shows a reversal signal for all rainfall annual indices and the cold night index over Argentina. Despite these differences, maps of the trends for most of the annual climate indices obtained from the NCEP/NCAR reanalysis and BRANT analysis are generally in good agreement with other available data sources and previous findings in the literature for large areas of southern South America. The pattern of trends for the precipitation annual indices over the 30 years analyzed indicates a change to wetter conditions over southern and southeastern parts of Brazil, Paraguay, Uruguay, central and northern Argentina, and parts of Chile and a decrease over southwestern South America. All over South America, the climate indices related to the minimum temperature (warm or cold nights) have clearly shown a warming tendency; however, no consistent changes in maximum temperature extremes (warm and cold days) have been observed. Therefore, one must be careful before suggesting an), trends for warm or cold days.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs ""radio-hybrid"" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request. (C) 2011 Elsevier B.V. All rights reserved.