3 resultados para multidimensional overlap

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predators and preys often form species networks with asymmetric patterns of interaction. We study the dynamics of a four species network consisting of two weakly connected predator-prey pairs. We focus our analysis on the effects of the cross interaction between the predator of the first pair and the prey of the second pair. This is an example where the predator overlap, which is the proportion of predators that a given prey shares with other preys, is not uniform across the network due to asymmetries in patterns of interaction. We explore the behavior of the system under different interaction strengths and study the dynamics of survival and extinction. In particular, we consider situations in which the four species have initial populations lower than their long-term equilibrium, simulating catastrophic situations in which their abundances are reduced due to human action or environmental change. We show that, under these reduced initial conditions, and depending on the strength of the cross interaction, the populations tend to oscillate before re-equilibrating, disturbing the community equilibrium and sometimes reaching values that are only a small fraction of the equilibrium population, potentially leading to their extinction. We predict that, contrary to one`s intuition, the most likely scenario is the extinction of the less predated preys. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualization of high-dimensional data requires a mapping to a visual space. Whenever the goal is to preserve similarity relations a frequent strategy is to use 2D projections, which afford intuitive interactive exploration, e. g., by users locating and selecting groups and gradually drilling down to individual objects. In this paper, we propose a framework for projecting high-dimensional data to 3D visual spaces, based on a generalization of the Least-Square Projection (LSP). We compare projections to 2D and 3D visual spaces both quantitatively and through a user study considering certain exploration tasks. The quantitative analysis confirms that 3D projections outperform 2D projections in terms of precision. The user study indicates that certain tasks can be more reliably and confidently answered with 3D projections. Nonetheless, as 3D projections are displayed on 2D screens, interaction is more difficult. Therefore, we incorporate suitable interaction functionalities into a framework that supports 3D transformations, predefined optimal 2D views, coordinated 2D and 3D views, and hierarchical 3D cluster definition and exploration. For visually encoding data clusters in a 3D setup, we employ color coding of projected data points as well as four types of surface renderings. A second user study evaluates the suitability of these visual encodings. Several examples illustrate the framework`s applicability for both visual exploration of multidimensional abstract (non-spatial) data as well as the feature space of multi-variate spatial data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of projecting multidimensional data into lower dimensions has been pursued by many researchers due to its potential application to data analyses of various kinds. This paper presents a novel multidimensional projection technique based on least square approximations. The approximations compute the coordinates of a set of projected points based on the coordinates of a reduced number of control points with defined geometry. We name the technique Least Square Projections ( LSP). From an initial projection of the control points, LSP defines the positioning of their neighboring points through a numerical solution that aims at preserving a similarity relationship between the points given by a metric in mD. In order to perform the projection, a small number of distance calculations are necessary, and no repositioning of the points is required to obtain a final solution with satisfactory precision. The results show the capability of the technique to form groups of points by degree of similarity in 2D. We illustrate that capability through its application to mapping collections of textual documents from varied sources, a strategic yet difficult application. LSP is faster and more accurate than other existing high-quality methods, particularly where it was mostly tested, that is, for mapping text sets.