4 resultados para mitotic instability

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-frequency extensions of magnetorotational instability driven by the Velikhov effect beyond the standard magnetohydrodynamic (MHD) regime are studied. The existence of the well-known Hall regime and a new electron inertia regime is demonstrated. The electron inertia regime is realized for a lesser plasma magnetization of rotating plasma than that in the Hall regime. It includes the subregime of nonmagnetized electrons. It is shown that, in contrast to the standard MHD regime and the Hall regime, magnetorotational instability in this subregime can be driven only at positive values of dln Omega/dlnr, where Omega is the plasma rotation frequency and r is the radial coordinate. The permittivity of rotating plasma beyond the standard MHD regime, including both the Hall regime and the electron inertia regime, is calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-fluid magnetohydrodynamic (MHD) theory of magnetorotational instability (MRI) in an ideal plasma is presented. The theory predicts the possibility of MRI for arbitrary 0, where 0 is the ratio of the plasma pressure to the magnetic field pressure. The kinetic theory of MRI in a collisionless plasma is developed. It is demonstrated that as in the ideal MHD, MRI can occur in such a plasma for arbitrary P. The mechanism of MRI is discussed; it is shown that the instability appears because of a perturbed parallel electric field. The electrodynamic description of MRI is formulated under the assumption that the dispersion relation is expressed in terms of the permittivity tensor; general properties of this tensor are analyzed. It is shown to be separated into the nonrotational and rotational parts. With this in mind, the first step for incorporation of MRI into the general theory of plasma instabilities is taken. The rotation effects on Alfven waves are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we show that, if L is a natural Lagrangian system such that the k-jet of the potential energy ensures it does not have a minimum at the equilibrium and such that its Hessian has rank at least n - 2, then there is an asymptotic trajectory to the associated equilibrium point and so the equilibrium is unstable. This applies, in particular, to analytic potentials with a saddle point and a Hessian with at most 2 null eigenvalues. The result is proven for Lagrangians in a specific form, and we show that the class of Lagrangians we are interested can be taken into this specific form by a subtle change of spatial coordinates. We also consider the extension of this results to systems subjected to gyroscopic forces. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1 Delta tsa2 Delta) are more resistant to hydrogen peroxide than wildtype (WT) cells and consume it faster under fermentative conditions. Also, tsa1 Delta tsa2 Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1 Delta tsa2 Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu, Zn-superoxide dismutase (Sod1), whose expression and activity increased similar to 5- and 2-fold, respectively, in tsa1 Delta tsa2 Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1 Delta tsa2 Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1 Delta tsa2 Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.