8 resultados para microneurography
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
NUNES ALVES, M. J. N., M. R. DOS SANTOS, R. G. DIAS, C. A. AKIHO, M. C. LATERZA, M. U. P. B. RONDON, R. L. DE MORAES MOREAU, and C. E. NEGRAO. Abnormal Neurovascular Control in Anabolic Androgenic Steroids Users. Med. Sci. Sports Exerc., Vol. 42, No. 5, pp. 865-871, 2010. Purpose: Previous studies showed that anabolic androgenic steroids (AAS) increase vascular resistance and blood pressure (BP) in humans. In this study, we tested the hypotheses 1) that AAS users would have increased muscle sympathetic nerve activity (MSNA) and reduced forearm blood flow (FBF) compared with AAS nonusers and 2) that there would be an association between MSNA and 24-h BP. Methods: Twelve AAS users aged 31 +/- 2 yr (means +/- SE) and nine age-matched AAS nonusers aged 29 T 2 yr participated in the study. All individuals were involved in strength training for at least 2 yr. AAS was determined by urine test (chromatography-mass spectrometry). MSNA was directly measured by microneurography technique. FBF was measured by venous occlusion plethysmography. BP monitoring consisted of measures of BP for 24 h. Results: MSNA was significantly higher in AAS users than that in AAS nonusers (29 +/- 3 vs 20 +/- 1 bursts per minute, P = 0.01). FBF (1.92 +/- 0.17 vs 2.77 +/- 0.24 mL.min(-1).100 mL(-1), P = 0.01) and forearm vascular conductance (2.01 +/- 0.17 vs 2.86 +/- 0.31 U, P = 0.02) were significantly lower in AAS users than that in AAS nonusers. Systolic (131 +/- 4 vs 120 +/- 3 mm Hg, P = 0.001), diastolic (74 +/- 4 vs 68 +/- 3 mm Hg, P = 0.02), and mean BP (93 +/- 4 vs 86 +/- 3 mm Hg, P = 0.005) and heart rate (74 +/- 3 vs 68 +/- 3 bpm, P = 0.02) were significantly higher in AAS users when compared with AAS nonusers. Further analysis showed that there was a significant correlation between MSNA and 24-h mean BP (r = 0.75, P = 0.002). Conclusions: AAS increases MSNA and reduces muscle blood flow in young individuals. In addition, the increase in BP levels in AAS users is associated with augmented sympathetic outflow. These findings suggest that AAS increases the susceptibility for cardiovascular disease in humans.
Resumo:
We compared the effects of exercise training on neurovascular control and functional capacity in men and women with chronic heart failure (HF). Forty consecutive HF outpatients from the Heart Institute, University of Sao Paulo, Brazil were divided into the following four groups matched by age: men exercise-trained (n = 12), men untrained (n = 10), women exercise-trained (n = 9), women untrained (n = 9). Maximal exercise capacity was determined from a maximal progressive exercise test on a cycle ergometer. Forearm blood flow was measured by venous occlusion plethysmography. Muscle sympathetic nerve activity (MSNA) was recorded directly using the technique of microneurography. There were no differences between groups in any baseline parameters. Exercise training produced a similar reduction in resting MSNA (P = 0.000002) and forearm vascular resistance (P = 0.0003), in men and women with HF. Peak VO(2) was similarly increased in men and women with HF (P = 0.0003) and VE/VCO(2) slope was significantly decreased in men and women with HF (P = 0.0007). There were no significant changes in left-ventricular ejection fraction in men and women with HF. The benefits of exercise training on neurovascular control and functional capacity in patients with HF are independent of gender.
Resumo:
Background: The progression of heart failure in Chagas` disease has been explained by remodeling, leading to neurohumoral activation, or by the direct parasite damage to parasympathetic neurons during acute phase, leading to early sympathetic activation and progressive heart failure. To help distinguish between these hypotheses we studied muscle sympathetic nerve activity (MSNA) at rest and during handgrip exercise (30% of maximal voluntary contraction) in patients with Chagas` disease and normal ejection fraction vs. patients with heart failure. Methods: A consecutive study of 72 eligible out-patients/subjects was conducted between July 1998 and November 2004. The participants were classified in three advanced heart failure groups (New York Heart Association Functional Classes II-III): Chagas` disease (n-15), ischemic (n=15) and idiopathic cardiomyopathy (n-15). Twelve Chagas` disease patients without heart failure and normal ejection fraction, and 15 normal controls were also studied. MSNA was recorded directly from the peroneal nerve by microneurography technique. Results: MSNA was greater in heart failure patients when compared with Chagas` disease patients without heart failure (51 +/- 3 vs. 20 +/- 2 bursts/min P=0.0001). MSNA in Chagas` patients with normal ejection fraction and normal controls was not different. During exercise, MSNA was similar in all 3 heart failure groups. And, was lower in the Chagas` patients with normal ejection fraction than in patients with Chagas` disease and heart failure (28 +/- 1 vs. 63 +/- 5 bursts/min, respectively). Conclusion: MSNA is not elevated in patients with Chagas` disease with normal ejection fraction. These findings support the concept of remodeling and neurohumoral activation as a common pathway following significant cardiac injury. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Previous studies have associated neurohumoral excitation, as estimated by plasma norepinephrine levels, with increased mortality in heart failure. However, the prognostic value of neurovascular interplay in heart failure (HF) is unknown. We tested the hypothesis that the muscle sympathetic nerve activity (MSNA) and forearm blood flow would predict mortality in chronic heart failure patients. Methods: One hundred and twenty two heart failure patients, NYHA II-IV, age 50 +/- 1 ys, LVEF 33 +/- 1%, and LVDD 7.1 +/- 0.2 mm, were followed up for one year. MSNA was directly measured from the peroneal nerve by microneurography. Forearm blood flow was obtained by venous occlusion plethysmography. The variables were analyzed by using univariate, stepwise multivariate Cox proportional hazards analysis, and Kaplan-Meier analysis. Results: After one year, 34 pts died from cardiac death. The univariate analysis showed that MSNA, forearm blood flow, LVDD, LVEF, and heart rate were significant predictors of mortality. The multivariate analysis showed that only MSNA (P = 0.001) and forearm blood flow (P = 0.003) were significant independent predictors of mortality. On the basis of median levels of MSNA, survival rate was significantly lower in pts with >49 bursts/min. Similarly, survival rate was significantly lower in pts with forearm blood flow <1.87 ml/min/100 ml (P = 0.002). Conclusion: MSNA and forearm blood flow predict mortality rate in patients with heart failure. It remains unknown whether therapies that specifically target these abnormalities will improve survival in heart failure. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Study Objectives: To test the effects of exercise training on sleep and neurovascular control in patients with systolic heart failure with and without sleep disordered breathing. Design: Prospective interventional study. Setting: Cardiac rehabilitation and exercise physiology unit and sleep laboratory. Patients: Twenty-five patients with heart failure, aged 42 to 70 years, and New York Heart Association Functional Class I-III were divided into 1 of 3 groups: obstructive sleep apnea (n = 8), central sleep apnea (n 9) and no sleep apnea (n = 7). Interventions: Four months of no-training (control) followed by 4 months of an exercise training program (three 60-minute, supervised, exercise sessions per week). Measures and Results: Sleep (polysomnography), microneurography, forearm blood flow (plethysmography), peak VO(2). and quality of life were evaluated at baseline and at the end of the control and trained periods. No significant changes occurred in the control period. Exercise training reduced muscle sympathetic nerve activity (P < 0.001) and increased forearm blood flow (P < 0.01), peak VO(2) (P < 0.01), and quality of life (P < 0.01) in all groups, independent of the presence of sleep apnea. Exercise training improved the apnea-hypopnea index, minimum O(2) saturation, and amount stage 3-4 sleep (P < 0.05) in patients with obstructive sleep apnea but had no significant effects in patients with central sleep apnea. Conclusions. The beneficial effects of exercise training on neurovascular function, functional capacity, and quality of life in patients with systolic dysfunction and heart failure occurs independently of sleep disordered breathing. Exercise training lessens the severity of obstructive sleep apnea but does not affect central sleep apnea in patients with heart failure and sleep disordered breathing.
Muscle sympathetic nervous activity in depressed patients before and after treatment with sertraline
Resumo:
Background Sympathetic hyperactivity is one of the mechanisms involved in the increased cardiovascular risk associated with depression, and there is evidence that antidepressants decrease sympathetic activity. Objectives We tested the following two hypotheses: patients with major depressive disorder with high scores of depressive symptoms (HMDD) have augmented muscle sympathetic nervous system activity (MSNA) at rest and during mental stress compared with patients with major depressive disorder with low scores of depressive symptoms (LMDD) and controls; sertraline decreases MSNA in depressed patients. Methods Ten HMDD, nine LMDD and 11 body weight-matched controls were studied. MSNA was directly measured from the peroneal nerve using microneurography for 3 min at rest and 4 min during the Stroop color word test. For the LMDD and HMDD groups, the tests were repeated after treatment with sertraline (103.3 +/- 40 mg). Results Resting MSNA was significantly higher in the HMDD [29.1 bursts/min (SE 2.9)] compared with LMDD [19.9 (1.6)] and controls [22.2 (2.0)] groups (P=0.026 and 0.046, respectively). There was a significant positive correlation between resting MSNA and severity of depression. MSNA increased significantly and similarly during stress in all the studied groups. Sertraline significantly decreased resting MSNA in the LMDD group and MSNA during mental stress in LMDD and HMDD groups. Sertraline significantly decreased resting heart rate and heart rate response to mental stress in the HMDD group. Conclusion Moderate-to-severe depression is associated with increased MSNA. Sertraline treatment reduces MSNA at rest and during mental challenge in depressed patients, which may have prognostic implications in this group. J Hypertens 27:2429-2436 (c) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Study Objectives: Metabolic syndrome (MetSyn) increases overall cardiovascular risk. MetSyn is also strongly associated with obstructive sleep apnea (OSA), and these 2 conditions share similar comorbidities. Whether OSA increases cardiovascular risk in patients with the MetSyn has not been investigated. We examined how the presence of USA in patients with MetSyn affected hemodynamic and autonomic variables associated with poor cardiovascular outcome. Design: Prospective clinical study. Participants: We studied 36 patients with MetSyn (ATP-III) divided into 2 groups matched for age and sex: (1) MetSyn+OSA (n = 18) and (2) MetSyn-OSA (n = 18). Measurements: USA was defined by an apnea-hypopnea index (AHI) > 15 events/hour by polysomnography. We recorded muscle sympathetic nerve activity (MSNA - microneurography), heart rate (HR), and blood pressure (BP - Finapres). Baroreflex sensitivity (BRS) was analyzed by spontaneous BP and HR fluctuations. Results: MSNA (34 +/- 2 vs 28 +/- 1 bursts/min, P = 0.02) and mean BP (111 +/- 3 vs. 99 +/- 2 mm Hg, P = 0.003) were higher in patients with MetSyn+OSA versus patients with MetSyn-USA. Patients with MetSyn+OSA had lower spontaneous BRS for increases (7.6 +/- 0.6 vs 12.2 +/- 1.2 msec/mm Hg, P = 0.003) and decreases (7.2 +/- 0.6 vs 11.9 +/- 1.6 msec/mm Hg, P = 0.01) in BP. MSNA was correlated with AHI (r = 0.48; P = 0.009) and minimum nocturnal oxygen saturation (r = -0.38, P = 0.04). Conclusion: Patients with MetSyn and comorbid USA have higher BP, higher sympathetic drive, and diminished BRS, compared with patients with MetSyn without USA. These adverse cardiovascular and autonomic consequences of USA may be associated with poorer outcomes in these patients. Moreover, increased BP and sympathetic drive in patients with MetSyn+OSA may be linked, in part, to impairment of baroreflex gain.
Resumo:
The aim of this study was to determine whether estrogen therapy enhances postexercise muscle sympathetic nerve activity (MSNA) decrease and vasodilation, resulting in a greater postexercise hypotension. Eighteen postmenopausal women received oral estrogen therapy (ET; n = 9, 1 mg/day) or placebo (n = 9) for 6 mo. They then participated in one 45-min exercise session (cycle ergometer at 50% of oxygen uptake peak) and one 45-min control session (seated rest) in random order. Blood pressure (BP, oscillometry), heart rate (HR), MSNA (microneurography), forearm blood flow (FBF, plethysmography), and forearm vascular resistance (FVR) were measured 60 min later. FVR was calculated. Data were analyzed using a two-way ANOVA. Although postexercise physiological responses were unaltered, HR was significantly lower in the ET group than in the placebo group (59 +/- 2 vs. 71 +/- 2 beats/min, P < 0.01). In both groups, exercise produced significant decreases in systolic BP (145 +/- 3 vs. 154 +/- 3 mmHg, P = 0.01), diastolic BP (71 +/- 3 vs. 75 +/- 2 mmHg, P = 0.04), mean BP (89 +/- 2 vs. 93 +/- 2 mmHg, P = 0.02), MSNA (29 +/- 2 vs. 35 +/- 1 bursts/min, P < 0.01), and FVR (33 +/- 4 vs. 55 +/- 10 units, P = 0.01), whereas it increased FBF (2.7 +/- 0.4 vs. 1.6 +/- 0.2 ml (.) min(-1) (.) 100 ml(-1), P = 0.02) and did not change HR (64 +/- 2 vs. 65 +/- 2 beats/min, P = 0.3). Although ET did not change postexercise BP, HR, MSNA, FBF, or FVR responses, it reduced absolute HR values at baseline and after exercise.