3 resultados para methylcellulose
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The aim of this study was to evaluate the effect of edible coatings based on methylcellulose (MC) and cassava starch (CS) to reduce oil uptake and improve water retention of chicken nuggets during deep fat frying. Edible coatings were prepared with I g of MC/100 g solution and 4 g of CS/100 g solution, with 25 or 55 g glycerol/100 g biopolymer. These solutions were applied to nugget samples before battering. Pre-fried and fried nuggets were analyzed to determine lipid and water contents. Color and texture were also measured in the fried nuggets. In general, there was no effect of the two concentrations of plasticizer of either of the biopolymers on the water retention of whole nuggets. But, higher oil uptake reduction, and consequently, lower lipid content was observed on nuggets coated with CS and 25% plasticizer. The coated samples were darker and had a brighter yellow color when compared with the control. There was also a significant decrease in the shearing force of the fried coated samples, indicating reduced hardness of these samples.
Resumo:
The aim of this study was to evaluate the incorporation of hydrophobic plasticizers (acetyltributyl citrate - ATB, tributyl citrate - TB and acetyltriethyl citrate - ATC) in a matrix of gelatin, using the saponin extracted from Yucca schidigera (yucca) as emulsifier, in the production of biodegradable emulsified films using the casting technique. High levels of hydrophobic plasticizers were incorporated, reaching up to 75% of plasticizer in relation to the protein (w/w) for ATB and TB, and up to 60% for ATC. The minimum values of water vapor permeability were 0.08, 0.07 and 0.06 g mm m(-2) h(-1) kPa(-1) for ATB, TB and ATC respectively, with no significant differences (p > 0.05). The water solubility of the films ranged from 21% to 59.5%. Although the WVP decreased, both scanning electron microscopy and laser scanning confocal microscopy indicated that the incorporation of the hydrophobic plasticizers did not occur homogeneously in the film matrix. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the effects of the addition of surfactants sodium stearoyl lactate (SSL) and sucrose ester (SE) on the functional properties of films produced with polysaccharides mixtures (methylcellulose/glucomannan/pectin in 1/4/1 ratio, respectively) and gelatin. The films were produced by the casting method and characterized for their water vapor permeability (WVP), mechanical (tensile strength and elongation to break point), morphological and optical properties. Films with low WVP were obtained with surfactants. Addition of SE to the films with polysaccharide/gelatin ratio of 90/10 showed improved mechanical properties. Films presented smooth surfaces with micro voids and lumpiness, depending on the surfactant tested. Surfactants increased the opacity of the films by a factor of 1-3%. All film properties were dependent on the surfactant affinity for the biopolymer matrix. SE presented more affinity for biopolymer matrix containing high polysaccharide proportion, and SSL presented more affinity for polymer matrix containing high gelatin proportion. The addition of surfactants decreased the water vapor permeability of the films, increasing their hydrophobic character.