4 resultados para membrane lipids
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Methods used for lipid analysis in embryos and oocytes usually involve selective lipid extraction from a pool of many samples followed by chemical manipulation, separation and characterization of individual components by chromatographic techniques. Herein we report direct analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of single and intact embryos or oocytes from various species. Biological samples were simply moisturized with the matrix solution and characteristic lipid ( represented by phosphatidylcholines, sphingomyelins and triacylglycerols) profiles were obtained via MALDI-MS. As representative examples, human, bovine, sheep and fish oocytes, as well as bovine and insect embryos were analyzed. MALDI-MS is shown to be capable of providing characteristic lipid profiles of gametes and embryos and also to respond to modifications due to developmental stages and in vitro culture conditions of bovine embryos. Investigation in developmental biology of the biological roles of structural and reserve lipids in embryos and oocytes should therefore benefit from these rapid MALDI-MS profiles from single and intact species.-Ferreira, C. R., S. A. Saraiva, R. R. Catharino, J. S. Garcia, F. C. Gozzo, G. B. Sanvido, L. F. A. Santos, E. G. Lo Turco, J. H. F. Pontes, A. C. Basso, R. P. Bertolla, R. Sartori, M. M. Guardieiro, F. Perecin, F. V. Meirelles, J. R. Sangalli, and M. N. Eberlin. Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 2010. 51: 1218-1227.
Resumo:
Lonomia obliqua caterpillar bristle extract induces hemolysis in vitro on washed human and rat erythrocytes, in either the absence or presence of exogenous lecithin. In the former condition, phospholipases A(2) are key enzymes involved in hemolysis. However, the mechanism whereby this extract causes direct hemolysis is not known. Thus, the aim of this study was to investigate the hemolytic mechanism of the crude extract of the caterpillar L obliqua on human erythrocytes in the absence of lecithin. The extract significantly increased the erythrocyte osmotic fragility and promoted the removal of glycophorins A and C, and band 3 from the erythrocyte membrane. The use of Ca(2+) and Mg(2+) ions significantly potentiated glycoprotein removal, remarkably of erythrocyte band 3. The composition of fatty acids was analyzed by HPLC in both L obliqua caterpillar bristle extract and human erythrocyte membranes incubated with the extract. The levels of unsaturated fatty acids were remarkably augmented in erythrocytes incubated with the extract than in control erythrocytes, modifying thereby the saturated/unsaturated fatty acid ratio. Altogether, evidence is provided here that the interplay of at least three mechanisms of action accounts for the direct activity of the bristle extract on erythrocyte membrane, leading to hemolysis: the removal of glycoproteins and band 3; the insertion of fatty acids; and the action of phospholipases. Such mechanisms might affect erythrocyte flexibility and deformability, which may induce hemolysis by increasing erythrocyte fragility. However, whether the direct hemolytic activity of L obliqua caterpillar is the major cause of intravascular hemolysis during envenomation still needs further investigation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The antiparasitic property of peptides is believed to be associated with their interactions with the protozoan membrane, which calls for research on the identification of membrane sites capable of peptide binding. In this study we investigated the interaction of a lipophilicglutathioine peptide known to be effective against the African Sleeping Sickness (ASS - African Trypanosomiasis) and cell membrane models represented by Langmuir monolayers. It is shown that even small amounts of the peptide affect the monolayers of some phospholipids and other lipids, which points to a significant interaction. The latter did not depend on the electrical charge of the monolayer-forming molecules but the peptide action was particularly distinctive for cholesterol + sphingomyelin monolayers that roughly resemble rafts on a cell membrane. Using in situ polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), we found that the orientation of the peptide is affected by the phospholipids and dioctadecyldimethylammonium bromide (DODAB), but not in monolayers comprising cholesterol + sphingomyelin. In this mixed monolayer resembling rafts, the peptide still interacts and has some induced order, probably because the peptide molecules are fitted together into a compact monolayer. Therefore, the lipid composition of the monolayer modulates the interaction with the lipophilic glutathioine peptide, and this may have important implications in understanding how the peptide acts on specific sites of the protozoan membrane. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Statins have pleiotropic effects, including endothelial nitric oxide synthase (eNOS) upregulation and increased nitric oxide formation, which can be modulated by a genetic polymorphism in the promoter region of the eNOS gene (T-786C). Here, we report our investigation of whether this polymorphism modulates the effects of atorvastatin on the fluidity of erythrocyte membranes. We genotyped 200 healthy subjects (males, 18-60 years of age) and then randomly selected 15 of these with the TT genotype and 15 with the CC genotype to receive placebo or atorvastatin (10 mg/day oral administration) for 14 days. Cell membrane fluidity was evaluated by electron paramagnetic resonance (EPR) and spin-labeling method. The EPR spectra were registered on a VARIAN-E4 spectrometer. Thiobarbituric acid-reactive species (TBA-RS) and plasma membrane cholesterol were determined in the erythrocytes. Atorvastatin reduced membrane fluidity in CC subjects (P < 0.05) but not in those with the TT genotype (P > 0.05). While no significant differences were found in plasma membrane cholesterol concentrations, higher TBA-RS concentrations were found in the CC subjects than in the TT subjects (P < 0.05). These findings suggest that a short treatment with atorvastatin is disadvantageous to subjects with the CC genotype for the T-786C polymorphism compared to those with TT genotype, at least in terms of the hemorheological properties of erythrocytes.