5 resultados para mechanical methods
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Purpose: The aim of this study was to evaluate the effect of three denture hygiene methods against different microbial biofilms formed on acrylic resin specimens. Materials and methods: The set (sterile stainless steel basket and specimens) was contaminated (37 degrees C for 48 hours) by a microbial inoculum with 106 colony-forming units (CFU)/ml (standard strains: Staphylococcus aureus, Streptococcus mutans, Escherichia coli, Candida albicans, Pseudomonas aeruginosa, and Enterococcus faecalis; field strains: S. mutans, C. albicans, C. glabrata, and C. tropicalis). After inoculation, specimens were cleansed by the following methods: (1) chemical: immersion in an alkaline peroxide solution (Bonyplus tablets) for 5 minutes; (2) mechanical: brushing with a dentifrice for removable prostheses (Dentu Creme) for 20 seconds; and (3) a combination of chemical and mechanical methods. Specimens were applied onto a Petri plate with appropriate culture medium for 10 minutes. Afterward, the specimens were removed and the plates incubated at 37 degrees C for 48 hours. Results: Chemical, mechanical, and combination methods showed no significant difference in the reduction of CFU for S. aureus, S. mutans (ATCC and field strain), and P. aeruginosa. Mechanical and combination methods were similar and more effective than the chemical method for E. faecalis, C. albicans (ATCC and field strain), and C. glabrata. The combination method was better than the chemical method for E. coli and C. tropicalis, and the mechanical method showed intermediate results. Conclusion: The three denture hygiene methods showed different effects depending on the type of microbial biofilms formed on acrylic base resin specimens.
Resumo:
Objective: The purpose of this in vitro study was to evaluate the antimicrobial activity of acrylic resins containing different percentages of silver and zinc zeolite, and to assess whether the addition of zeolite alters the flexural and impact strength of the resins. Background: The characteristics of acrylic resins support microorganism development that can threaten the health of the dentures user. Material and methods: A microwave-polymerised (Onda-Cryl) and two heat-polymerised (QC20 and Lucitone 550) acrylic resins were used. The materials were handled according to the manufacturers` instructions. Fifty rectangular-shaped specimens (8 x 10 x 4mm) were fabricated from each resin and assigned to 5 groups (n = 10) according to their percentage of Irgaguard B5000 silver-zinc zeolite (0%- control, 2.5%, 5.0%, 7.5% and 10%). Flexural strength and Izod impact strength were evaluated. The antimicrobial activity against two strains of Candida albicans and two strains of Streptococcus mutans was assessed by agar diffusion method. Data were analysed statistically by one-way ANOVA and Tukey`s test at 5% significance level. Results: The addition of 2.5% of Irgaguard B5000 to the materials resulted in antimicrobial activity against all strains. Flexural strength decreased significantly with the addition of 2.5% (QC20 and Lucitone 550) and 5.0% (Onda-Cryl) of Irgaguard B5000. The impact strength decreased significantly with the addition of 2.5% (Lucitone 550) and 5.0% (QC20 and Onda-Cryl) of zeolite. Conclusion: The addition of silver-zinc zeolite to acrylic resins yields antimicrobial activity, but may affect negatively the mechanical properties, depending on the percentage of zeolite.
Resumo:
Nesse artigo, tem-se o interesse em avaliar diferentes estratégias de estimação de parâmetros para um modelo de regressão linear múltipla. Para a estimação dos parâmetros do modelo foram utilizados dados de um ensaio clínico em que o interesse foi verificar se o ensaio mecânico da propriedade de força máxima (EM-FM) está associada com a massa femoral, com o diâmetro femoral e com o grupo experimental de ratas ovariectomizadas da raça Rattus norvegicus albinus, variedade Wistar. Para a estimação dos parâmetros do modelo serão comparadas três metodologias: a metodologia clássica, baseada no método dos mínimos quadrados; a metodologia Bayesiana, baseada no teorema de Bayes; e o método Bootstrap, baseado em processos de reamostragem.
Resumo:
The purpose of this study was to evaluate the influence of different light sources and photo-activation methods on degree of conversion (DC%) and polymerization shrinkage (PS) of a nanocomposite resin (Filtek (TM) Supreme XT, 3M/ESPE). Two light-curing units (LCUs), one halogen-lamp (QTH) and one light-emitting-diode (LED), and two different photo-activation methods (continuous and gradual) were investigated in this study. The specimens were divided in four groups: group 1-power density (PD) of 570 mW/cm(2) for 20 s (QTH); group 2-PD 0 at 570 mW/cm(2) for 10 s + 10 s at 570 mW/cm(2) (QTH); group 3-PD 860 mW/cm(2) for 20 s (LED), and group 4-PD 125 mW/cm(2) for 10 s + 10 s at 860 mW/cm(2) (LED). A testing machine EMIC with rectangular steel bases (6 x 1 x 2 mm) was used to record the polymerization shrinkage forces (MPa) for a period that started with the photo-activation and ended after two minutes of measurement. For each group, ten repetitions (n = 40) were performed. For DC% measurements, five specimens (n = 20) for each group were made in a metallic mold (2 mm thickness and 4 mm diameter, ISO 4049) and them pulverized, pressed with bromide potassium (KBr) and analyzed with FT-IR spectroscopy. The data of PS were analyzed by Analysis of Variance (ANOVA) with Welch`s correction and Tamhane`s test. The PS means (MPa) were: 0.60 (G1); 0.47 (G2); 0.52 (G3) and 0.45 (G4), showing significant differences between two photo-activation methods, regardless of the light source used. The continuous method provided the highest values for PS. The data of DC% were analyzed by Analysis of Variance (ANOVA) and shows significant differences for QTH LCUs, regardless of the photo-activation method used. The QTH provided the lowest values for DC%. The gradual method provides lower polymerization contraction, either with halogen lamp or LED. Degree of conversion (%) for continuous or gradual photo-activation method was influenced by the LCUs. Thus, the presented results suggest that gradual method photo-activation with LED LCU would suffice to ensure adequate degree of conversion and minimum polymerization shrinkage.
Resumo:
Thermal properties and degree of conversion (DC%) of two composite resins (microhybrid and nanocomposite) and two photo-activation methods (continuous and gradual) displayed by the light-emitting diode (LED) light-curing units (LCUs) were investigated in this study. Differential scanning calorimetry (DSC) thermal analysis technique was used to investigate the glass transition temperature (T(g)) and degradation temperature. The DC% was determined by Fourier transform infrared spectroscopy (FT-IR). The results showed that the microhybrid composite resin presented the highest T(g) and degradation temperature values, i.e., the best thermal stability. Gradual photo-activation methods showed higher or similar T(g) and degradation temperature values when compared to continuous method. The Elipar Freelight 2 (TM) LCU showed the lowest T(g) values. With respect to the DC%, the photo-activation method did not influence the final conversion of composite resins. However, Elipar Freelight 2 (TM) LCU and microhybrid resin showed the lowest DC% values. Thus, the presented results suggest that gradual method photo-activation with LED LCUs provides adequate degree of conversion without promoting changes in the polymer chain of composite resins. However, the thermal properties and final conversion of composite resins can be influenced by the kind of composite resin and LCU.