3 resultados para marine protected networks

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishing effective networks of protected areas (PAS) is one of the major goals of conservation strategies worldwide. However, the success of PAS in promoting biodiversity conservation depends on their integration to local and regional contexts, reducing and mitigating human impacts originating from buffer zones. Community perceptions affect interactions between residents and PAS, and thereby conservation effectiveness. Research at Tocantins state (northern Brazilian Cerrado), aimed to analyse local community perceptions of four PAs, discussing how different factors may influence these. Perceptions were assessed through standardized interviews applied to PA employees and 275 local inhabitants. There was modest community participation in PA establishment and management. Residents were aware of the PAS` existence, but were unfamiliar with their goals. Length of residency and occupation of inhabitants influenced their PA perceptions, shaping different people-park relations in each of the four studied PAs. Involvement of local residents in PA planning and management represents a central strategy to strengthen local support for PAS over the long term. In those areas that still have settlements inside their boundaries, community relocation should follow a careful participatory process to avoid significant changes in local perceptions and attitudes towards these PAS, crucial for conserving Brazilian biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a technique to build, within a dissipative bosonic network, decoherence-free channels (DFCs): a group of normal-mode oscillators with null effective damping rates. We verify that the states protected within the DFC define the well-known decoherence-free subspaces (DFSs) when mapped back into the natural network oscillators. Therefore, our technique to build protected normal-mode channels turns out to be an alternative way to build DFSs, which offers advantages over the conventional method. It enables the computation of all the network-protected states at once, as well as leading naturally to the concept of the decoherence quasi-free subspace (DQFS), inside which a superposition state is quasi-completely protected against decoherence. The concept of the DQFS, weaker than that of the DFS, may provide a more manageable mechanism to control decoherence. Finally, as an application of the DQFSs, we show how to build them for quasi-perfect state transfer in networks of coupled quantum dissipative oscillators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By considering a network of dissipative quantum harmonic oscillators, we deduce and analyse the optimum topologies which are able to store quantum superposition states, protecting them from decoherence, for the longest period of time. The storage is made dynamically, in that the states to be protected evolve through the network before being retrieved back in the oscillator where they were prepared. The decoherence time during the dynamic storage process is computed and we demonstrate that it is proportional to the number of oscillators in the network for a particular regime of parameters.