10 resultados para main components
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Cobalt is one of the main components of cast metal alloys broadly used in dentistry. It is the constituent of 45 to 70% of numerous prosthetic works. There are evidences that metal elements cause systemic and local toxicity. The purpose of the present study was to evaluate the effects of cobalt on the junctional epithelium and reduced enamel epithelium of the first superior molar in rats, during lactation. To do this, 1-day old rats were used, whose mothers received 300mg of cobalt chloride per liter of distilled water in the drinker, during lactation. After 21 days, the rat pups were killed with an anesthetic overdose. The heads were separated, fixed in ""alfac"", decalcified and embedded in paraffin. Frontal sections stained with hematoxylin and eosin were employed. Karyometric methods allowed to estimate the following parameters: biggest, smallest and mean diameters, D/d ratio, perimeter, area, volume, volume/area ratio, eccentricity, form coefficient and contour index. Stereologic methods allow to evaluate: cytoplasm/nucleus ratio, cell and cytoplasm volume, cell number density, external surface/basal membrane ratio, thickness of the epithelial layers and surface density. All the collected data were subjected to statistic analysis by the non-parametric Wilcoxon-Mann-Whitney test. The nuclei of the studied tissues showed smaller values after karyometry for: diameters; perimeter, area, volume and volume/area ratio. Stereologically, it was observed, in the junctional epithelium and in the reduced enamel epithelium, smaller cells with scarce cytoplasm, reflected in the greater number of cells per mm3 of tissue. In this study, cobalt caused epithelial atrophy, indicating a direct action on the junctional and enamel epithelium.
Resumo:
The leaves of the Pitanga bush (Eugenia uniflora L.) are considered to be effective against many diseases. Extracts from Pitanga leaves have been found to show pronounced anti-inflammatory action and to have antimicrobial and antifungal activities, among other properties. In this work, extracts from Pitanga leaves were obtained by hydrodistillation and by extraction with supercritical carbon dioxide (SC-CO(2)) at three conditions of temperature and pressure. In the SC-CO(2) extractions also were collected the components that are lost with the CO(2) in the exit of the system using Porapak-Q polymer trap. All extracts were analyzed by gas chromatography-mass spectrometry (GC-MS). Thirty-nine compounds were found in the extracts and twenty-six were identified. The main components identified in the extracts in decreasing quantitative order were: curzerene, germacrene B, C(15)H(20)O(2) and beta-elemene for hydrodistillation; C(15)H(20)O(2) and curzerene for SC-CO(2) extracts and 3-hexen-1-ol, curzerene, C(15)H(20)O(2), beta-elemene and germacrene B for SC-CO(2) extracts captured in Porapak-Q. PRACTICAL APPLICATIONS The natural extracts are a potential source of compounds possessing biological activities. They can be used in foods, pharmaceutics and cosmetics. Pitanga is an exotic fruit from Brazil and extracts from its leaves have been used against many diseases in Brazilian folk medicine. Supercritical extraction is an interesting process for the production of natural extracts because it is a clean process and the knowledge of composition of extracts is crucial for the identification of the probable active components.
Resumo:
The essential oils isolated by hydrodistillation from trunk bark and leaves of Talauma ovata A. St. Hil. (Magnoliaceae), collected in four seasons, were analyzed by capillary GC and GC/MS. Altogether 52 components were identified, The oils were characterized by predominance of cyclic sesquiterpenes. The main components were linalool, trans-beta-guaiene, germaerene D, germacrene B, spathulenol, caryophyllene oxide, viridiflorol and alpha-endesmol. The content of individual components was variable during the year. All oils were screened against several strains of bacteria and yeasts, using the agar well-diffusion technique. The antimicrobial activity of oils showed strong dependence with the season. Significant activity was found for oils obtained in the spring and summer.
Resumo:
Sodreaninae is reviewed and all ten species are combined under its type genus, Sodreana Mello-Leitao, 1922, according to a cladistic analysis of morphological characters, which revealed a pectinate pattern of clades. The subfamily is endemic to the Brazilian Atlantic rainforest from Santa Catarina state to Rio de Janeiro state. Sodreana is herein considered a senior synonym of Stygnobates Mello-Leitao, 1927, Zortalia Mello-Leitao, 1936, Gertia B. Soares & H. Soares, 1946 and Annampheres H. Soares, 1979. The following new combinations are proposed: Sodreana barbiellinii (Mello-Leitao, 1927), Sodreana hatschbachi (B. Soares & H. Soares, 1946), Sodreana inscripta (Mello-Leitao, 1939), Sodreana leprevosti (B. Soares & H. Soares, 1947b), Sodreana bicalcarata (Mello-Leitao, 1936). Sodreana granulata (Mello-Leitao, 1937) is revalidated from the synonymy of Sodreana sodreana Mello-Leitao, 1922. Three new species are described: Sodreana glaucoi from Ilhabela and Boraceia, Sao Paulo state; S. curupira from Parque Nacional da Serra dos Orgaos, Rio de Janeiro state, and S. caipora from Ubatuba, Sao Paulo state. Sodreaninae species are restricted to forested areas and most occur in the southern part of the coastal Atlantic rainforest, one species occurs in interior Atlantic rainforest. The biogeographical analysis (Brooks Parsimony Analysis) resulted in a single and fully resolved most parsimonious tree with three main: components: northern (Bahia and Serra do Espinhaco), southern (Santa Catarina, Parana, Serra do Mar of Sao Paulo), and central (Espirito Santo, Serra da Bocaina, southern state of Rio de Janeiro, Serra dos Orgaos, Serra da Mantiqueira, Serra do Mar of Sao Paulo).
Resumo:
The reactions induced by the weakly bound (6)Li projectile interacting with the intermediate mass target (59)Co were investigated. Light charged particles singles and alpha-d coincidence measurements were performed at the near barrier energies E(lab) = 17.4, 21.5, 25.5 and 29.6 MeV. The main contributions of the different competing mechanisms are discussed. A statistical model analysis. Continuum-Discretized Coupled-Channels (CDCC) calculations and two-body kinematics were used as tools to provide information to disentangle the main components of these mechanisms. A significant contribution of the direct breakup was observed through the difference between the experimental sequential breakup cross section and the CDCC prediction for the non-capture breakup cross section. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The thermoluminescence (TL) characteristics of quartz are highly dependent of its thermal history. Based on the enhancement of quartz luminescence occurred after heating, some authors proposed to use quartz TL to recover thermal events that affected quartz crystals. However, little is know about the influence of the temperature of quartz crystallization on its TL characteristics. In the present study, we evaluate the TL sensitivity and dose response curves of hydrothermal and metamorphic quartz with crystallization temperatures from 209 +/- 15 to 633 +/- 27 degrees C determined through fluid inclusion and mineral chemistry analysis. The studied crystals present a cooling thermal history, which allow the acquiring of their natural TL without influence of heating after crystallization. The TL curves of the studied samples present two main components formed by different peaks overlapped around 110 C and 200-400 degrees C. The TL sensitivity in the 200-400 degrees C region increases linearly with the temperature of quartz crystallization. No relationship was observed between temperatures of quartz crystallization and saturation doses (<100 Gy). The elevated TL sensitivity of the high temperature quartz is attributed to the control exerted by the temperature of crystallization on the substitution of Si(4+) by ions such as Al(3+) and Ti(4+), which produce defects responsible for luminescence phenomena. The linear relationship observed between TL in the 200-400 degrees C region and crystallization temperature has potential use as a quartz geothermometer. The relative abundance of quartz in the earth crust and the easiness to measure TL are advantageous in relation to geothermometry methods based on chemistry of other minerals. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The volatile Constituents of the fresh materials of Hypericum cordatum were isolated by hydrodistillation kind analyzed by CC and GC/MS. The leaves produced 0.04% of a yellowish essential oil and the flowers did not. The main components of the oil were myrcene (40.18%), alpha-pinene (16.40%), and limonene (12%). The antibacterial activities of the oil against Saccharomyces aureus and Escherichia coli and the anti-fungal activities of the oil against the fungi Cladosporium cladosporioides and C. sphaerospemum were evaluated. The oil showed an antibacterial activity against the bacteria S. aureus and anti-fungal activity against the two fungi.
Resumo:
The chemical composition of essential oils obtained from fresh leaves and stem bark of Southeastern Brazilian native Drimys brasiliensis Miers were analyzed by GC and GC/MS and 37 compounds were identified. The oils from fresh leaves showed the presence of monoterpenes (53.9%) and sesquiterpenes (38.4%), with sabinene (9.5%), myrcene (10.5%), limonene (10.6%) and cyclocolorenone (16.0%) being the most abundant. The stern bark oil was characterized by predominance of sesquiterpenoids (87.6%) and the absence of monoterpenes, the main components being cyclocolorenone (28.3%) and spathuleneol (22.9%). A small amount of phenylpropanes (6.8-6.9%) was also detected in both oil samples.
Resumo:
Soybean oil soapstock was utilized as an alternative carbon source for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. The chemical composition and properties of the rhamnolipid mixture obtained were determined to define its potential applications. The chemical characterization of the rhamnolipid has revealed the presence of ten different homologues. The monorhamnolipid RhaC(10)C(10) and the dirhamnolipid Rha(2)C(10)C(10) were the main components of the mixture that showed predominance of 44% and 29%, respectively, after 144-h of cultivation. The biosurfactant was able to form stable emulsions with several hydrocarbons and showed excellent emulsification for soybean oil and chicken fat (100%). The rhamnolipid removed 67% of crude oil present in sand samples and presented antimicrobial activity against Bacillus cereus and Mucor miehei at 64 mu g/mL and inhibition of Neurospora crassa, Staphylococcus aureus, and Micrococcus luteus at 256 mu g/mL. The results demonstrated that the rhamnolipid produced in soybean oil soapstock can be useful in environmental and food industry applications.
Resumo:
Two hybrid materials based on dodecatungstophosphoric acid (HPW) dispersed in ormosils modified with 3-aminopropiltrietoxysilane (APTS) or with N-(3-(trimethoxysilyl)-propyl)-ethylene-diamine (TSPEN) show reversible photochromic response induced by irradiation in the 200-390 nm UV range. A set of solid-state nuclear magnetic resonance (NMR) techniques was used to analyze the structural properties of the main components of these hybrids (the HPW polyanion, the inorganic matrix, and the organic functionalities). For the ormosils, the use of (29)Si NMR, {(1)H}-(29)Si cross-polarization, and {(1)H}-(29)Si HETCOR revealed a homogeneous distribution of silicon species Q ``, T(2), and T(3) for the APTS hybrid, contrasting with the separation of T(3) species in the TSPEN hybrid. The combination of (31)P NMR, {(1)H}-(31)P cross-polarization and (31)P-{(1)H} spin-echo double resonance (SEDOR) revealed the dispersion of the HPW ions in the ormosil, occupying sites with a high number of close protons (>50). Differences in the molecular dynamics at room temperature, inferred from SEDOR experiments, indicate a state of restricted mobility of the HPW ion and the surrounding molecular groups in the TSPEN hybrid. This behavior is consistent with the presence of more amino groups in the TSPEN, acting as chelating groups to the HPW ion. This hybrid, with the strong chelate interaction of the diamine group, shows the most intense photochromic response, in agreement with the charge transfer models proposed to explain the photochromic effect. Electronic reflectance spectroscopy in irradiated samples revealed the presence of one-electron and two-electron reduced polyanions. The one-electron reduced species could be detected also by (31)P NMR spectroscopy immediately after UV irradiation.