6 resultados para mRNA stability
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Whereas it is well known that T3 inhibits TSH beta gene transcription, its effects on TSH beta mRNA stability and translation have been poorly investigated. This study examined these possibilities, by evaluating the TSH beta transcripts poly(A) tail length, translational rate and binding to cytoskeleton, in pituitaries of thyroidectomized and sham-operated rats treated with T3 or saline, and killed 30 min thereafter. The hypothyroidism induced an increase of TSH beta transcript poly(A) tail, as well as of its content in ribosomes and attachment to cytoskeleton. The hypothyroid rats acutely treated with T3 exhibited a reduction of TSH beta mRNA poly(A) tail length and recruitment to ribosomes, indicating that this treatment decreased the stability and translation rate of TSH beta mRNA. Nevertheless, acute T3 administration to sham-operated rats provoked an increase of TSH beta transcripts binding to ribosomes. These data add new insight to an important role of T3 in rapidly regulating TSH gene expression at posttranscriptional level. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Cytoskeleton controls the stability of transcripts, by mechanisms that involve mRNAs and eEF1A attachment to it. Besides, it plays a key role in protein synthesis and secretion, which seems to be impaired in somatotrophs of hypothyroid rats, whose cytoskeleton is disarranged. This study investigated the: eEF1A and GH mRNA binding to cytoskeleton plus GH mRNA translation rate and GH secretion, in sham-operated and thyroidectomized rats treated with T3 or saline, and killed 30 min thereafter. Thyroidectomy reduced: (a) pituitary F-actin content, and eEF1A plus GH mRNA binding to it; (b) GH mRNA recruitment to polysome; and (c) liver IGF-1 mRNA expression, indicating that GH mRNA stability and translation rate, as well as GH secretion were impaired. T3 acutely reversed all these changes, which points toward a nongenomic action of T3 on cytoskeleton rearrangement, which might contribute to the increase on GH mRNA translation rate and GH secretion. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The activity of the Na(+)/H(+) exchanger NHE3 is regulated by a number of factors including parathyroid hormone (PTH). In the current study, we used a renal epithelial cell line, the opossum kidney (OKP) cell, to elucidate the mechanisms underlying the long-term effects of PTH on NHE3 transport activity and expression. We observed that NHE3 activity was reduced 6 h after addition of PTH, and this reduction persisted almost unaltered after 24 h. The decrease in activity was associated with diminished NHE3 cell surface expression at 6, 16, and 24 h after PTH addition, total cellular NHE3 protein at 16 and 24 h, and NHE3 mRNA abundance at 24 h. The lower levels of NHE3 mRNA were associated to a small, but significant, decrease in mRNA stability. Additionally, by analyzing the rat NHE3 gene promoter activity in OKP cells, we verified that the regulatory region spanning the segment -152 to +55 was mildly reduced under the influence of PTH. This effect was completely abolished by the presence of the PKA inhibitor KT 5720. In conclusion, long-term exposure to PTH results in reduction of NHE3 mRNA levels due to a PKA-dependent inhibitory effect on the NHE3 promoter and a small reduction of mRNA half-life, and decrease in the total amount of protein which is preceded by endocytosis of the apical surface NHE3. The decreased NHE3 expression is likely to be responsible for the reduction of sodium, bicarbonate, and fluid reabsorption in the proximal tubule consistently perceived in experimental models of PTH disorders.
Resumo:
Serrano-Nascimento C, Calil-Silveira J, Nunes MT. Posttranscriptional regulation of sodium-iodide symporter mRNA expression in the rat thyroid gland by acute iodide administration. Am J Physiol Cell Physiol 298: C893-C899, 2010. First published January 27, 2010; doi:10.1152/ajpcell.00224.2009.-Iodide is an important regulator of thyroid activity. Its excess elicits the Wolff-Chaikoff effect, characterized by an acute suppression of thyroid hormone synthesis, which has been ascribed to serum TSH reduction or TGF-beta increase and production of iodolipids in the thyroid. These alterations take hours/days to occur, contrasting with the promptness of Wolff-Chaikoff effect. We investigated whether acute iodide administration could trigger events that precede those changes, such as reduction of sodium-iodide symporter (NIS) mRNA abundance and adenylation, and if perchlorate treatment could counteract them. Rats subjected or not to methylmercaptoimidazole treatment (0.03%) received NaI (2,000 mu g/0.5 ml saline) or saline intraperitoneally and were killed 30 min up to 24 h later. Another set of animals was treated with iodide and perchlorate, in equimolar doses. NIS mRNA content was evaluated by Northern blotting and real-time PCR, and NIS mRNA poly(A) tail length by rapid amplification of cDNA ends-poly(A) test (RACE-PAT). We observed that NIS mRNA abundance and poly(A) tail length were significantly reduced in all periods of iodide treatment. Perchlorate reversed these effects, indicating that iodide was the agent that triggered the modifications observed. Since the poly(A) tail length of mRNAs is directly associated with their stability and translation efficiency, we can assume that the rapid decay of NIS mRNA abundance observed was due to a reduction of its stability, a condition in which its translation could be impaired. Our data show for the first time that iodide regulates NIS mRNA expression at posttranscriptional level, providing a new mechanism by which iodide exerts its autoregulatory effect on thyroid.
Resumo:
The pst operon of Escherichia coli is composed of five genes that encode a high-affinity phosphate transport system. As a member of the PHO regulon, pst transcription is activated under phosphate shortage conditions. Under phosphate-replete conditions, the pst operon also functions as a negative regulator of the PHO genes. Transcription of pst is initiated at the promoter located upstream to the first gene, pstS. Immediately after its synthesis, the primary transcript of pst is cleaved into shorter mRNA molecules. The transcription unit corresponding to pstS is significantly more abundant than the transcripts of the other pst genes due to stabilisation of pstS mRNA by a repetitive extragenic palindrome (REP) structure downstream to the pstS locus. The presence of the REP sequence also results in an increased level of PstS proteins. However, the surplus level of PstS proteins produced in the presence of REP does not contribute to the repressive role of Pst in PHO expression.
Resumo:
The deficiency of complement C5 is rare and frequently associated with severe and recurrent infections, especially caused by Neisseria spp. We observed the absence of component C5 in the serum of 3 siblings from a Brazilian family with history of consanguinity. The patients had suffered from recurrent episodes of meningitis and other less severe infections. Sera from these patients were unable to mediate hemolytic activity either by the classical or alternative pathways and presented extremely low levels of C5 protein (13, 0.9 and 1.0 mu g/ml-normal range: 45-190 mu g/ml). Hemolytic activity could be restored by the addition of purified C5 to deficient serum. Sequencing of sibling C5 cDNA revealed a homozygous 153 bp deletion that corresponds precisely to exon 30. The parents carried the same deletion but only in one allele. Sequencing of the corresponding region in the genomic DNA revealed a C to C substitution within intron 30 and, most significantly, the substitution of GAG(4028) for GAA(4028) at the 3` end of exon 30 which is most likely responsible for skipping of exon 30. The resulting in-frame deletion in the C5 mRNA codes for a mutant C5 protein lacking residues 1289-1339. These residues map to the CUB and C5d domains of the C5 alpha chain. This deletion is expected to produce a non-functional and unstable C5 protein which is more susceptible to degradation. (C) 2009 Published by Elsevier Ltd.