7 resultados para low-molecular-weight heparin
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Bovine rumen protein with two levels of residual lipids (1.9% or 3.8%) was subjected to thermoplastic extrusion under different temperatures and moisture contents. Protein Solubility in different buffers, disulphide cross-linking and molecular weight distribution were determined on the extrudates. After extrusion, samples with 1.9% residual lipids content had a higher concentration of protein insoluble by undetermined forces, irrespective of feed moisture and processing temperature used. Lipid content of 3.8% in the feed material resulted in more protein participating in the extrudate network through non-covalent interactions (hydrophobic and electrostatic) and disulphide bonds. A small dependency of the extrusion process on moisture and temperature and a marked dependency on lipid content, especially phospholipid, was observed, Electrophoresis under non-reducing conditions showed that protein extrusion with low feed moisture promoted high molecular breakdown inside the barrel, probably due to intense shear force, and further protein aggregation at the die end. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Levels of autoantibodies to oxidized low-density lipoprotein (oxLDL) have been correlated to atherosclerosis; however, contradictory results have been shown. To better understand the role of autoantibodies to oxLDL in atherogenesis, and their potential to predict risk of developing coronary artery disease we investigated the antibody response of unstable angina (UA) patients and healthy controls against chromatographic separated fractions of oxLDL. Five major peaks were detected after chromatographic separation of oxLDL and 10 fractions were collected. Surprisingly, when the response to high molecular weight fractions was analysed, we observed a significant increase in the levels of autoantibodies in controls compared to UA. In contrast, when the autoantibody response to intermediate and low molecular weight fractions was analysed, we observed that the UA group showed consistently higher levels compared with controls. Our data demonstrates that within oxLDL there are major fractions that can be recognized by autoantibodies from either UA patients or healthy individuals, and that the use of total oxLDL as an antigen pool may mask the presence of some antigenic molecules and their corresponding antibodies. Further studies are needed, but the analysis of antibody profiles may indeed open up a novel approach for evaluation and prevention against atherosclerosis.
Resumo:
The cold shock response in bacteria involves the expression of low-molecular weight cold shock proteins (CSPs) containing a nucleic acid-binding cold shock domain (CSD), which are known to destabilize secondary structures on mRNAs, facilitating translation at low temperatures. Caulobacter crescentus cspA and cspB are induced upon cold shock, while cspC and cspD are induced during stationary phase. In this work, we determined a new coding sequence for the cspC gene, revealing that it encodes a protein containing two CSDs. The phenotypes of C. crescentus csp mutants were analyzed, and we found that cspC is important for cells to maintain viability during extended periods in stationary phase. Also, cspC and cspCD strains presented altered morphology, with frequent non-viable filamentous cells, and cspCD also showed a pronounced cell death at late stationary phase. In contrast, the cspAB mutant presented increased viability in this phase, which is accompanied by an altered expression of both cspC and cspD, but the triple cspABD mutant loses this characteristic. Taken together, our results suggest that there is a hierarchy of importance among the csp genes regarding stationary phase viability, which is probably achieved by a fine tune balance of the levels of these proteins.
Resumo:
P>Acute ocular infection due to free-living amoebae of the genus Acanthamoeba is characterized by severe pain, loss of corneal transparency and, eventually, blindness. Proteolytic enzymes secreted by trophozoites of virulent Acanthamoeba strains have an essential role in the mechanisms of pathogenesis, including adhesion, invasion and destruction of the corneal stroma. In this study, we analysed the relationship between the extracellular proteases secreted by clinical isolates of Acanthamoeba and the clinical manifestations and severity of disease that they caused. Clinical isolates were obtained from patients who showed typical symptoms of Acanthamoeba keratitis. Trophozoites were cultivated axenically, and extracellular proteins were collected from cell culture supernatants. Secreted enzymes were partially characterized by gelatin and collagen zymography. Acanthamoeba trophozoites secreted proteases with different molecular masses, proteolysis rates and substrate specificities, mostly serine-like proteases. Different enzymatic patterns of collagenases were observed, varying between single and multiple collagenolytic activities. Low molecular weight serine proteases were secreted by trophozoites associated with worse clinical manifestations. Consequently, proteolytic enzymes of some Acanthamoeba trophozoites could be related to the degree of their virulence and clinical manifestations of disease in the human cornea.
Resumo:
A novel inhibitor of Schistosoma PNP was identified using an ""in silico"" approach allied to enzyme inhibition assays. The compound has a monocyclic structure which has not been previously described for PNP inhibitors The crystallographic structure of the complex was determined and used to elucidate the binding mode within the active site Furthermore, the predicted pose was very similar to that determined crystallographically, validating the methodology The compound Sm_VS1, despite its low molecular weight, possesses an IC(50) of 1 3 mu M, surprisingly low when compared with purine analogues This is presumably due to the formation of eight hydrogen bonds with key residues in the active site E203, N245 and T244. The results of this study highlight the importance of the use of multiple conformations for the target during virtual screening. Indeed the Sm_VS1 compound was only identified after flipping the N245 side chain It is expected that the structure will be of use in the development of new highly active non-purine based compounds against the Sclustosoma enzyme. (c) 2010 Elsevier B V. All rights reserved
Resumo:
In this work Cu and Fe bioavailability in cashew nuts was evaluated using in vitro method. Extractions with simulated gastric and intestinal fluids and dialysis procedures were applied for this purpose. The proteins separation and quantification were performed by size exclusion chromatography (SEC) coupled on-line to ultra-violet (UV) and off-line to simultaneous multielement atomic absorption spectrometry (SIMAAS). The SEC-UV and SIMAAS profiles of the protein fractions obtained by alkaline extraction (NaOH) and precipitation with HCl indicated the presence of high and low molecular weight species in the range between >75 kDa and 9.3 kDa. Almost 83% of Cu and 78% of Fe were extracted during cashew nut digestion and 90% of both elements were dialyzed. With these results it is possible to assume that 75% of Cu and 70% of Fe present in cashew nut could be bioavailable. The SEC-UV and SIMAAS chromatographic profiles obtained after in vitro gastrointestinal digestion reveal that Cu and Fe not dialyzed can be associated to a compound of 9.2 kDa. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Chitosan, a biopolymer obtained from chitin, and its derivates, such as chitosan hydrochloride, has been reported as wound healing accelerators and as possible bone substitutes for tissue engineering, and therefore these Substances could be relevant in dentistry and periodontology. The purpose of this investigation was to make a histological evaluation of chitosan and chitosan hydrochloride biomaterials (gels) used in the correction of critical size bone defects made in rat`s calvaria. Bone defects of 8 mm in diameter were surgically created in the calviria of 50 Holtzman (Rattus norvegicus) rats and filled with blood clot (control), low molecular weight chitosan, high molecular weight chitosan, low molecular weight chitosan hydrochloride, and high molecular weight chitosan hydrochloride, numbering 10 animals, divided into two experimental periods (15 and 60 days), for each biomaterial. The histological evaluation was made based on the morphology of the new-formed tissues in defect`s region, and the results indicated that there was no statistical difference between the groups when the new bone formation in the entire defect`s area were compared (p > 0.05) and, except in the control groups, assorted degrees of inflammation Could be Seen. In Conclusion, chitosan and chitosan hydrochloride biomaterials used in this study were not able to promote new bone formation in critical size defects made in rat`s calvaria. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res 93A: 107-114, 2016