130 resultados para liquid effluents
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
BACKGROUND: The use of the volatile salt ammonium carbamate in protein downstream processing has recently been proposed. The main advantage of using volatile salts is that they can be removed from precipitates and liquid effluents through pressure reduction or temperature increase. Although previous studies showed that ammonium carbamate is efficient as a precipitant agent, there was evidence of denaturation in some enzymes. In this work, the effect of ammonium carbamate on the stability of five enzymes was evaluated. RESULTS: Activity assays showed that alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1), lysozyme (1,4-beta-N-acetylmuramoylhydrolase, EC 3.2.1.17) and lipase (triacyl glycerol acyl hydrolase, EC 3.1.1.3) did not undergo activity loss in ammonium carbamate solutions with concentrations from 1.0 to 5.0 mol kg(-1), whereas cellulase complex (1,4-(1,3 : 14)-beta-D-glucan 4-glucano-hydrolase, EC 3.2.1.4) and peroxidase (hydrogen peroxide oxidoreductase, EC 1.11.1.7) showed an average activity loss of 55% and 44%, respectively. Precipitation assays did not show enzyme denaturation or phase separation for alpha-amylase and lipase, while celullase and peroxidase precipitated with some activity reduction. Analysis of similar experiments with ammonium and sodium sulfate did not affect the activity of enzymes. CONCLUSION: Celullase and peroxidase were denatured by ammonium carbamate. While more systematic studies are not available, care must be taken in designing a protein precipitation with this salt. The results suggest that the generally accepted idea that salts that denature proteins tend to solubilize them does not hold for ammonium carbamate. (C) 2010 Society of Chemical Industry
Resumo:
In petroleum refineries, water is used in desalting units to remove the salt contained in crude oil. Typically, 7% of the volume of hot crude oil is water, forming a water-and-oil emulsion. The emulsion flows between two electrodes and is subjected to an electric field. The electrical forces promote the coalescence of small droplets of water dispersed in crude oil, and these form bigger droplets. This paper calculates the forces acting on the droplets, highlighting particularly the mechanisms proposed for droplet-droplet coalescence under the influence of an applied electric field. Moreover, a model is developed in order to calculate the displacement speed of the droplets and the time between droplet collisions. Thus, it is possible to simulate and optimize the process by changing the operational variables (temperature, electrical field, and water quantity). The main advantage of this study is to show that it is feasible to increase the volume of water recycled in desalting processes, thus reducing the use of freshwater and the generation of liquid effluents in refineries.
Resumo:
The main objective of this research was to evaluate the potential use of a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal as inert support for removal Of Sulfide and organic matter effluents from an ASBBR (1.2 m(3)) utilized for treatment of sulfate-rich wastewater. The cycle time was 48 h, including the steps of feeding (2 h), reaction with continuous liquid recirculation (44 h) and discharge (2 h). COD removal efficiency was up to 90% and the effluents total sulfide concentrations (H(2)S, HS(-), S(2-)) remained in the range of 1.5 to 7.5 mg.l(-1) during the 50 days of operation (25 cycles). The un-ionized Sulfide and ionized sulfides were converted by biological process to elemental sulfur (S(0)) under oxygen limited conditions. The results obtained in the bench-scale reactor were used to design an ASBBR in pilot scale for use in post-treatment to achieve the emission standards (sulfide and COD) for sulfate reduction. The pilot-scale reactor, with a total volume of 0.43 m(3), the COD and total sulfide removal achieved 88% and 57%, respectively, for a cycle time of 48 h (70 days of operation or 35 cycles).
Resumo:
The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.
Resumo:
The flavonoids present in sugarcane (Saccharum officinarum) extracts were analyzed by liquid chromatography - mass spectrometry (LC-MS), and a study of the fragmentation patterns of selected flavonoids was conducted using orthogonal acceleration time-of-flight electrospray ionization mass spectrometry (ESI-oa-ToF MS). Seven C- and O-glycosylflavones were identified in the extracts, namely, schaftoside, isoschaftoside, luteolin-8-C-(rhamnosylglucoside), vitexin, orientin, tricin-7-O-neohesperidoside and tricin-7-O-glucoside. Of these, five were identified in the absence of direct comparison with their respective standards. The described method also permitted the differentiation of the 6-C and 8-C isomeric flavones, schaftoside and isoschaftoside. The combination of fragmentation data and exact mass measurement showed to be complimentary to the HPLC-UV-MS techniques previously utilized for isomers discrimination in sugarcane studies.
Resumo:
Temperature-dependent electrical resistance in quasi-one-dimensional Li(0.9)Mo(6)O(17) is described by two Luttinger liquid anomalous exponents alpha, each associated with a distinct one dimensional band. The band with alpha < 1 is argued to crossover to a higher dimension below the temperature T(M'), leading to superconductivity. Disorder and magnetic fields are shown to induce the Bose metal behavior in this bulk compound.
Resumo:
Biomass Refinery is a sequential of eleven thermochemical processes and one biological process with two initial basic treatments: prehydrolysis for lignocellulosics and low temperature conversion for biomass with medium-to-high content of lipids and proteins. The other ten processes are: effluent treatment plant, furfural plant, biodiesel plant, cellulignin dryer, calcination, fluidized bed boiler, authotermal reforming of cellulignin for syngas production, combined cycle of two-stroke low-speed engine or syngas turbine with fluidized bed boiler heat recovery, GTL technologies and ethanol from cellulose, prehydrolysate and syngas. Any kind of biomass such as wood, agricultural residues, municipal solid waste, seeds, cakes, sludges, excrements and used tires can be processed at the Biomass Refinery. Twelve basic products are generated such as cellulignin, animal feed, electric energy, fuels (ethanol, crude oil, biodiesel, char), petrochemical substitutes, some materials (ash, gypsum, fertilizers, silica, carbon black) and hydrogen. The technology is clean with recovery of energy and reuse of water, acid and effluents. Based on a holistic integration of various disciplines Biomass Refinery maximizes the simultaneous production of food, electric energy, liquid fuels and chemical products and some materials, achieving a competitive position with conventional and fossil fuel technologies, as well as payment capacity for biomass production. Biomass Refinery has a technical economical capability to complement the depletion of the conventional petroleum sources and to capture its GHGs resulting a biomass + petroleum ""green"" combination.
Resumo:
The strategy used to treat HCV infection depends on the genotype involved. An accurate and reliable genotyping method is therefore of paramount importance. We describe here, for the first time, the use of a liquid microarray for HCV genotyping. This liquid microarray is based on the 5'UTR - the most highly conserved region of HCV - and the variable region NS5B sequence. The simultaneous genotyping of two regions can be used to confirm findings and should detect inter-genotypic recombination. Plasma samples from 78 patients infected with viruses with genotypes and subtypes determined in the Versant (TM) HCV Genotype Assay LiPA (version I; Siemens Medical Solutions, Diagnostics Division, Fernwald, Germany) were tested with our new liquid microarray method. This method successfully determined the genotypes of 74 of the 78 samples previously genotyped in the Versant (TM) HCV Genotype Assay LiPA (74/78, 95%). The concordance between the two methods was 100% for genotype determination (74/74). At the subtype level, all 3a and 2b samples gave identical results with both methods (17/17 and 7/7, respectively). Two 2c samples were correctly identified by microarray, but could only be determined to the genotype level with the Versant (TM) HCV assay. Genotype ""1'' subtypes (1a and 1b) were correctly identified by the Versant (TM) HCV assay and the microarray in 68% and 40% of cases, respectively. No genotype discordance was found for any sample. HCV was successfully genotyped with both methods, and this is of prime importance for treatment planning. Liquid microarray assays may therefore be added to the list of methods suitable for HCV genotyping. It provides comparable results and may readily be adapted for the detection of other viruses frequently co-infecting HCV patients. Liquid array technology is thus a reliable and promising platform for HCV genotyping.
Resumo:
A magnetic study of 10 nm magnetite nanoparticles diluted in lyotropic liquid crystal and common liquids was carried out. In the liquid crystal the ZFC-FC curves showed a clear irreversible behavior, and it was possible to distinguish the nematic from the isotropic phase since the magnetization followed the dependence of the nematic order parameter with the temperature. This behavior could be mimicked by Monte Carlo simulation. (C) 2011 American Institute of Physics. [doi:10.1063/1.3549616]
Resumo:
The analysis of Macdonald for electrolytes is generalized to the case in which two groups of ions are present. We assume that the electrolyte can be considered as a dispersion of ions in a dielectric liquid, and that the ionic recombination can be neglected. We present the differential equations governing the ionic redistribution when the liquid is subjected to an external electric field, describing the simultaneous diffusion of the two groups of ions in the presence of their own space charge fields. We investigate the influence of the ions on the impedance spectroscopy of an electrolytic cell. In the analysis, we assume that each group of ions have equal mobility, the electrodes perfectly block and that the adsorption phenomena can be neglected. In this framework, it is shown that the real part of the electrical impedance of the cell has a frequency dependence presenting two plateaux, related to a type of ambipolar and free diffusion coefficients. The importance of the considered problem on the ionic characterization performed by means of the impedance spectroscopy technique was discussed. (c) 2008 American Institute of Physics.
Resumo:
Spectral changes of Na(2) in liquid helium were studied using the sequential Monte Carlo-quantum mechanics method. Configurations composed by Na(2) surrounded by explicit helium atoms sampled from the Monte Carlo simulation were submitted to time-dependent density-functional theory calculations of the electronic absorption spectrum using different functionals. Attention is given to both line shift and line broadening. The Perdew, Burke, and Ernzerhof (PBE1PBE, also known as PBE0) functional, with the PBE1PBE/6-311++G(2d,2p) basis set, gives the spectral shift, compared to gas phase, of 500 cm(-1) for the allowed X (1)Sigma(+)(g) -> B (1)Pi(u) transition, in very good agreement with the experimental value (700 cm(-1)). For comparison, cluster calculations were also performed and the first X (1)Sigma(+)(g) -> A (1)Sigma(+)(u) transition was also considered.
Resumo:
The Bell-Lavis model for liquid water is investigated through numerical simulations. The lattice-gas model on a triangular lattice presents orientational states and is known to present a highly bonded low density phase and a loosely bonded high density phase. We show that the model liquid-liquid transition is continuous, in contradiction with mean-field results on the Husimi cactus and from the cluster variational method. We define an order parameter which allows interpretation of the transition as an order-disorder transition of the bond network. Our results indicate that the order-disorder transition is in the Ising universality class. Previous proposal of an Ehrenfest second order transition is discarded. A detailed investigation of anomalous properties has also been undertaken. The line of density maxima in the HDL phase is stabilized by fluctuations, absent in the mean-field solution. (C) 2009 American Institute of Physics. [doi:10.1063/1.3253297]
Resumo:
The dynamic polarizability and optical absorption spectrum of liquid water in the 6-15 eV energy range are investigated by a sequential molecular dynamics (MD)/quantum mechanical approach. The MD simulations are based on a polarizable model for liquid water. Calculation of electronic properties relies on time-dependent density functional and equation-of-motion coupled-cluster theories. Results for the dynamic polarizability, Cauchy moments, S(-2), S(-4), S(-6), and dielectric properties of liquid water are reported. The theoretical predictions for the optical absorption spectrum of liquid water are in good agreement with experimental information.
Resumo:
We have reconsidered the Bell-Lavis model of liquid water and investigated its relation to its isotropic version, the antiferromagnetic Blume-Emery-Griffiths model on the triangular lattice. Our study was carried out by means of an exact solution on the sequential Husimi cactus. We show that the ground states of both models share the same topology and that fluid phases (gas and low- and high-density liquids) can be mapped onto magnetic phases (paramagnetic, antiferromagnetic, and dense paramagnetic, respectively). Both models present liquid-liquid coexistence and several thermodynamic anomalies. This result suggests that anisotropy introduced through orientational variables play no specific role in producing the density anomaly, in agreement with a similar conclusion discussed previously following results for continuous soft core,models. We propose that the presence of liquid anomalies may be related to energetic frustration, a feature common to both models.
Resumo:
The electronic properties of liquid ammonia are investigated by a sequential molecular dynamics/quantum mechanics approach. Quantum mechanics calculations for the liquid phase are based on a reparametrized hybrid exchange-correlation functional that reproduces the electronic properties of ammonia clusters [(NH(3))(n); n=1-5]. For these small clusters, electron binding energies based on Green's function or electron propagator theory, coupled cluster with single, double, and perturbative triple excitations, and density functional theory (DFT) are compared. Reparametrized DFT results for the dipole moment, electron binding energies, and electronic density of states of liquid ammonia are reported. The calculated average dipole moment of liquid ammonia (2.05 +/- 0.09 D) corresponds to an increase of 27% compared to the gas phase value and it is 0.23 D above a prediction based on a polarizable model of liquid ammonia [Deng , J. Chem. Phys. 100, 7590 (1994)]. Our estimate for the ionization potential of liquid ammonia is 9.74 +/- 0.73 eV, which is approximately 1.0 eV below the gas phase value for the isolated molecule. The theoretical vertical electron affinity of liquid ammonia is predicted as 0.16 +/- 0.22 eV, in good agreement with the experimental result for the location of the bottom of the conduction band (-V(0)=0.2 eV). Vertical ionization potentials and electron affinities correlate with the total dipole moment of ammonia aggregates. (c) 2008 American Institute of Physics.