6 resultados para lignan

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toxicity of tetrahydrofuran lignan grandisin was evaluated against larvae of Chrysomya megacephala F. (Diptera: Calliphoridae). The bioassay involved topical treatment on larvae, topical treatment oil egg masses, and incorporation in the larval diet. Grandisin showed inhibition of postembryonic development by ovicidal (30%) and larvicidal (38%) effects and reduced larval weight (4 mg), when topically applied oil egg masses and starving larvae (L1) at a concentration of 100 mu g/mu l. These findings elucidated the effect of grandisin on the C. megacephala life cycle and its potential to control C. megacephala populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives The chemoprotective effect of the tetrahydrofuran lignan grandisin against DNA damage induced by cyclophosphamide (200 mg/kg) has been evaluated using the in vitro rodent micronucleus assay. Methods The effects of a daily oral administration of grandisin (2, 4, or 8 mg/kg) for five days before exposure to cyclophosphamide on the frequency of micronucleus in the bone marrow of normal mice exposed and unexposed to cyclophosphamide were investigated (n = 5 per group). Electrochemical measurements were applied to investigate whether the antimutagenic effects of grandisin could be, at least in part, a consequence of its or its metabolite`s antioxidant properties. Key findings Grandisin did not show mutagenic effects on the bone marrow cells of exposed mice. On the other hand, the oral administration of grandisin (2, 4, or 8 mg/kg) per day reduced dose-dependently the frequency of micronucleus, induced by cyclophosphamide, in all groups studied. Cyclic voltammograms showed two peaks for a grandisin metabolite, which were absent for grandisin. Conclusions Under the conditions tested herein, this study has shown that mice treated with grandisin presented, in a dose-dependent manner, a protective effect against cyclophosphamide-induced mutagenicity. This effect could be, at least in part, associated to grandisin bioactivation. These data open new perspectives for further investigation into the toxicology and applied pharmacology of grandisin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preclinical investigations can start with preliminary in vitro studies before using animal models. Following this approach, the number of animals used in preclinical acute toxicity testing can be reduced. In this study, we employed an in-house validated in vitro cytotoxicity test based on the Spielmann approach for toxicity evaluation of the lignan grandisin, a candidate anticancer agent, and its major metabolite. the 4-O-demethylgrandisin, by neutral red uptake (NRU) assay, on mouse fibroblasts Balb/c 3T3 cell line. Using different concentrations of grandisin and its major metabolite (2.31; 1.16; 0.58; 0.29; 0.14; 0.07; 0.04; 0.002 mu M) in Balb/c 3T3-A31 NRU cytotoxicity assay, after incubation for 48 h, we obtained IC(50) values for grandisin and its metabolite of 0.078 and 0.043 mu M, respectively. The computed LD(50) of grandisin and 4-O-demethylgrandisin were 617.72 and 429.95 mg/kg, respectively. Both were classified under the Globally Harmonized System as category 4. Since pharmacological and toxicological data are crucial in the developmental stages of drug discovery, using an in vitro assay we demonstrated that grandisin and its metabolite exhibit distinct toxicity profiles. Furthermore, results presented in this work can contribute to reduce the number of animals required in subsequent pharmacological/toxicological studies. (C) 2010 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dengue is a tropical disease caused by an arbovirus transmitted by the mosquito Aedes aegypti. Because no effective vaccine is available for the disease, the strategy for its prevention has focused on vector control by the use of natural insecticides. The aim of this study was to evaluate the larvicidal activity of the lignan grandisin, a leaf extract from Piper solmsianum, against Ae. aegypti.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biotransformation of the major Piper solmsianum leaf phenylpropanoids, such as the tetrahydrofuran lignan grandisin and derivatives was investigated in the beetle Naupactus bipes as well as in the caterpillars Heraclides hectorides and Quadrus u-lucida. Analysis of fecal material indicated that metabolism occurred mainly through mono- and di-O-demethylation at para positions of 3,4,5-trimethoxyphenyl rings of tetrahydrofuran lignans during digestion by these insects. Additionally, 3-hydroxy-4,5-dimethoxycinnamyl and 3,4,5-trimethoxycinnamyl alcohols were identified in fecal extracts of N. bipes. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports an expert system (SISTEMAT) developed for structural determination of diverse chemical classes of natural products, including lignans, based mainly on 13C NMR and 1H NMR data of these compounds. The system is composed of five programs that analyze specific data of a lignan and shows a skeleton probability for the compound. At the end of analyses, the results are grouped, the global probability is computed, and the most probable skeleton is exhibited to the user. SISTEMAT was able to properly predict the skeletons of 80% of the 30 lignans tested, demonstrating its advantage during the structural elucidation course in a short period of time.