68 resultados para life cycle stages
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: Life cycles of medusozoan cnidarians vary widely, and have been difficult to document, especially in the most recently proposed class Staurozoa. However, molecular data can be a useful tool to elucidate medusozoan life cycles by tying together different life history stages. Methodology/Principal Findings: Genetic data from fast-evolving molecular markers (mitochondrial 16S, nuclear ITS1, and nuclear ITS2) show that animals that were presumed to be a hydrozoan, Microhydrula limopsicola (Limnomedusae, Microhydrulidae), are actually an early stage of the life cycle of the staurozoan Haliclystus antarcticus (Stauromedusae, Lucernariidae). Conclusions/Significance: Similarity between the haplotypes of three markers of Microhydrula limopsicola and Haliclystus antarcticus settles the identity of these taxa, expanding our understanding of the staurozoan life cycle, which was thought to be more straightforward and simple. A synthetic discussion of prior observations makes sense of the morphological, histological and behavioral similarities/congruence between Microhydrula and Haliclystus. The consequences are likely to be replicated in other medusozoan groups. For instance we hypothesize that other species of Microhydrulidae are likely to represent life stages of other species of Staurozoa.45
Resumo:
The life cycle of Ixodes luciae was evaluated for five consecutive generations in the laboratory. Wild mice Calomys callosus and laboratory rats Rattus norvegicus were used as hosts for larvae and nymphs. For adult ticks, opossums Didelphis aurita were used as hosts. Off-host developmental periods were observed in an incubator at 27A degrees C and 95% RH. The life cycle of I. luciae lasted 95-97 days, excluding prefeeding periods. C. callosus, one of the natural host species for I. luciae immature stages, was shown to be much more suitable than the artificial host R. norvegicus. Significantly (P < 0.05), more larvae and nymphs successfully fed on C. callosus than on R. norvegicus. When tick-na < ve C. callosus were exposed to three consecutive larval infestations at 24-day intervals, recovery of engorged larvae were greater in the second and third infestations, indicating that previous infestations did not induce acquired resistance to ticks. Larval feeding period typically varied from 5 to 10 days on R. norvegicus, but was significantly (P < 0.05), longer on C. callosus (range, 7-34 days). The majority (71.7%) of I. luciae adult females successfully fed and oviposited after exposed to D. aurita. Mean engorged weight (581.9 mg; range, 237.1-796.0 mg) of these females were much higher than those previously reported for other New World Ixodes species. Our results are in accordance to the current literature that appoints opossums Didelphidae and small rodents (e.g., C. callosus) natural hosts for I. luciae immature and adult stages, respectively.
Resumo:
We describe growth, longevity, sex ratio, reproductive period, and recruitment of Aegla paulensis from Jaragua Stale Park, Sao Paulo, Brazil (23 degrees 27'27.9 '' S; 46 degrees 45'32.3 '' W). The population was sampled monthly (September 2007 through August 2009) with the aid of traps. Over five thousand individuals were captured, sexed, measured (carapace length = CL) and inspected for reproductive traits (females only), and then released back to the sampling site. The pattern of the reproductive cycle was strongly seasonal (austral mid autumn through late winter), with a single recruitment pulse per year. The obtained von Bertalanffy growth equations were CL = 21.25[1-e(-0.041(t + 1.250))] and CL = 16.52[1-e(-0.049(t + 1.823))] for males and females, respectively. Males (mean CL +/- SD = 11.86 +/- 2.79 mm) attain larger sizes than females (mean CL +/- SD = 10.84 +/- 2.36 mm). Aegla paulensis reproduces twice during an estimated life span of 40.2 months for females and 33.9 months for males. Temporal variation of sex ratio showed a distinctive pattern characterized by a sequence of three distinct periods that repeated from one year to another, and which suggested that a behavioral component influence the proportion of sex in adult specimens sampled with traps during reproductive and non-reproductive periods.
Resumo:
An assessment is made of the atmospheric emissions from the life cycle of fuel ethanol coupled with the cogeneration of electricity from sugarcane in Brazil. The total exergy loss from the most quantitative relevant atmospheric emission substances produced by the life cycle of fuel ethanol is 3.26E+05 kJ/t of C(2)H(5)OH, Compared with the chemical exergy of 1 t of ethanol (calculated as 34.56E + 06 kJ). the exergy loss from the life cycle`s atmospheric emission represents 1.11% of the product`s exergy. The activity that most contributes to atmospheric emission chemical exergy losses is the harvesting of sugarcane through the methane emitted in burning. Suggestions for improved environmental quality and greater efficiency of the life cycle of fuel ethanol with cogenerated energy are: harvesting the sugarcane without burning, renewable fuels should be used in tractors, trucks and buses instead of fossil fuel and the transportation of products and input should be logistically optimized. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The evaporators of sugar plants in Brazil have used carbon steel intensively because of it is, a low priced material, which possesses inferior corrosion resistance. The materials more indicated for the substitution of carbon steel are stainless steels, however they are considered expensive. The environmental and financial performances of evaporator pipes constructed with carbon steel and with types AISI 304 444 and 439 stainless steel were evaluated. For the environmental evaluation, the Life Cycle Assessment (LCA) methodology Was used and it, revealed that stainless steel is more environmentally efficient than carbon steel. The life cycle costing (LCC) technique was the tool chosen for the financial evaluation and it showed that stainless steel is a better investment option compared to carbon steel. The results also indicate that LCA and LCC methodologies must be used together Therefore, it can he seen that safer environmental products can come to be the most profitable investment options.
Resumo:
Amblyomma incisum Neumann is a major tick species in the Atlantic Forest of Brazil. Tapir is the main host for adult ticks and a high aggressiveness of nymphs to humans has been reported. In this work data on the biology and life cycle of this tick species is presented for the first time. It was shown that horse is a suitable host for A. incisum adults and rabbit for larvae and nymphs. It was also shown that A. incisum is a big tick species (mean engorged female weight of 1.96 g) with a long life cycle which lasts 262.3 days when maintained at 27A degrees C and 85% RH. These laboratory conditions were, however, inappropriate and egg hatching rate (1.2%) was very low. Nevertheless egg hatching of ticks in a forest patch increased considerably (72.2%) indicating that this A. incisum population is highly dependent on a forest-like environment.
Resumo:
The activity of the antineoplastic drug tamoxifen was evaluated against Trypanosoma cruzi. In vitro activity was determined against epimastigote, trypomastigote and amastigote forms of CL14, Y and Y benznidazole resistant T. cruzi strains. Regardless of the strain used, the drug was active against all life-cycle stages of the parasite with a half maximal effective concentration ranging from 0.7-17.9 µM. Two experimental models of acute Chagas disease were used to evaluate the in vivo efficacy of treatment with tamoxifen. No differences in parasitemia and mortality were observed between control mock-treated and tamoxifen-treated mice.
Resumo:
Background: During mating, insect males eject accessory gland proteins (Acps) into the female genital tract. These substances are known to affect female post-mating behavior and physiology. In addition, they may harm the female, e. g., in reducing its lifespan. This is interpreted as a consequence of sexual antagonistic co-evolution. Whereas sexual conflict abounds in non-social species, the peculiar life history of social insects (ants, bees, wasps) with lifelong pair-bonding and no re-mating aligns the reproductive interests of the sexes. Harming the female during mating would negatively affect male fitness and sexual antagonism is therefore not expected. Indeed, mating appears to increase female longevity in at least one ant species. Acps are presumed to play a role in this phenomenon, but the underlying mechanisms are unknown. In this study, we investigated genes, which are preferentially expressed in male accessory glands of the ant Leptothorax gredleri, to determine which proteins might be transferred in the seminal fluid. Results: By a suppression subtractive hybridization protocol we obtained 20 unique sequences (USs). Twelve had mutual best matches with genes predicted for Apis mellifera and Nasonia vitripennis. Functional information (Gene Ontology) was available only for seven of these, including intracellular signaling, energy-dependent transport and metabolic enzyme activities. The remaining eight USs did not match sequences from other species. Six genes were further analyzed by quantitative RT-PCR in three life cycle stages of male ants. A gene with carboxy-lyase activity and one of unpredicted function were significantly overexpressed in accessory glands of sexually mature males. Conclusions: Our study is the first one to investigate differential gene expression in ants in a context related to mating. Our findings indicate that male accessory glands of L. gredleri express a series of genes that are unique to this species, possibly representing novel genes, in addition to conserved ones for which functions can be predicted. Identifying differentially expressed genes might help to better understand molecular mechanisms involved in reproductive processes in eusocial Hymenoptera. While the novel genes could account for rapidly evolving ones driven by intra-sexual conflict between males, conserved genes imply that rather beneficial traits might get fixed by a process described as inter-sexual cooperation between males and females.
Resumo:
Schistosoma mansoni is a well-adapted blood-dwelling parasitic helminth, persisting for decades in its human host despite being continually exposed to potential immune attack. Here, we describe in detail micro-exon genes (MEG) in S. mansoni, some present in multiple copies, which represent a novel molecular system for creating protein variation through the alternate splicing of short (<= 36 bp) symmetric exons organized in tandem. Analysis of three closely related copies of one MEG family allowed us to trace several evolutionary events and propose a mechanism for micro-exon generation and diversification. Microarray experiments show that the majority of MEGs are up-regulated in life cycle stages associated with establishment in the mammalian host after skin penetration. Sequencing of RT-PCR products allowed the description of several alternate splice forms of micro-exon genes, highlighting the potential use of these transcripts to generate a complex pool of protein variants. We obtained direct evidence for the existence of such pools by proteomic analysis of secretions from migrating schistosomula and mature eggs. Whole-mount in situ hybridization and immunolocalization showed that MEG transcripts and proteins were restricted to glands or epithelia exposed to the external environment. The ability of schistosomes to produce a complex pool of variant proteins aligns them with the other major groups of blood parasites, but using a completely different mechanism. We believe that our data open a new chapter in the study of immune evasion by schistosomes, and their ability to generate variant proteins could represent a significant obstacle to vaccine development.
Resumo:
Phacellophora camtschatica has long been assigned to the semaeostome scyphozoan family Ulmaridae. Early stages (scyphistomae, strobilae, ephyrae, postephyrae, and young medusae) of the species were compared with those of several other semaeostomes currently assigned to Ulmaridae, Pelagiidae, and Cyaneidae. Juveniles of P. camtschatica did not strictly conform with characters of those of any of these families, and appeared intermediate between Cyaneidae and Ulmaridae. A new family, Phacellophoridae, is proposed to accommodate P. camtschatica.
Resumo:
Trypanosoma cruzi, the agent of Chagas` disease, alternates between different morphogenetic stages that face distinct physiological conditions in their invertebrate and vertebrate hosts, likely in the availability of glucose. While the glucose transport is well characterized in epimastigotes of T cruzi, nothing is known about how the mammalian stages acquire this molecule. Herein glucose transport activity and expression were analyzed in the three developmental stages present in the vertebrate cycle of T cruzi. The infective trypomastigotes showed the highest transport activity (V(max) = 5.34 +/- 0.54 nmol/min per mg of protein: K(m) = 0.38 +/- 0.01 mM) when compared to intracellular epimastigotes (V(max) = 2.18 +/- 0.20 nmol/min per mg of protein; K(m) = 0.39 +/- 0.01 mM). Under the conditions employed no transport activity could be detected in amastigotes. The gene of the glucose transporter is expressed at the mRNA level in trypomastigotes and in intracellular epimastigotes but not in amastigotes, as revealed by real-time PCR. In both trypomastigotes and intracellular epimastigotes protein expression could be detected by Western blot with an antibody raised against the glucose transporter correlating well with the transport activity measured experimentally. Interestingly, anti-glucose transporter antibodies showed a strong reactivity with glycosome and reservosome organelles. A comparison between proline and glucose transport among the intracellular differentiation forms is presented. The data suggest that the regulation of glucose transporter reflects different energy and carbon requirements along the intracellular life cycle of T cruzi. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Hexamerins are hemocyanin-derived proteins that have lost the ability to bind copper ions and transport oxygen; instead, they became storage proteins. The current study aimed to broaden our knowledge on the hexamerin genes found in the honey bee genome by exploring their structural characteristics, expression profiles, evolution, and functions in the life cycle of workers, drones and queens. Results: The hexamerin genes of the honey bee (hex 70a, hex 70b, hex 70c and hex 110) diverge considerably in structure, so that the overall amino acid identity shared among their deduced protein subunits varies from 30 to 42%. Bioinformatics search for motifs in the respective upstream control regions (UCRs) revealed six overrepresented motifs including a potential binding site for Ultraspiracle (Usp), a target of juvenile hormone (JH). The expression of these genes was induced by topical application of JH on worker larvae. The four genes are highly transcribed by the larval fat body, although with significant differences in transcript levels, but only hex 110 and hex 70a are re-induced in the adult fat body in a caste-and sex-specific fashion, workers showing the highest expression. Transcripts for hex 110, hex 70a and hex70b were detected in developing ovaries and testes, and hex 110 was highly transcribed in the ovaries of egg-laying queens. A phylogenetic analysis revealed that HEX 110 is located at the most basal position among the holometabola hexamerins, and like HEX 70a and HEX 70c, it shares potential orthology relationship with hexamerins from other hymenopteran species. Conclusions: Striking differences were found in the structure and developmental expression of the four hexamerin genes in the honey bee. The presence of a potential binding site for Usp in the respective 5' UCRs, and the results of experiments on JH level manipulation in vivo support the hypothesis of regulation by JH. Transcript levels and patterns in the fat body and gonads suggest that, in addition to their primary role in supplying amino acids for metamorphosis, hexamerins serve as storage proteins for gonad development, egg production, and to support foraging activity. A phylogenetic analysis including the four deduced hexamerins and related proteins revealed a complex pattern of evolution, with independent radiation in insect orders.
Resumo:
Medusae and polyps of Clytia are abundantly found in coastal marine environments and one species in the genus-Clytia hemisphaerica (Linnaeus, 1767)-has become an important experimental model. Yet, only 10 species in the genus have had their life cycle investigated. Most species of Clytia are also poorly described, and detailed life cycle and morphological studies are needed for accurate species-level identifications. Here, we investigated the life cycle of Clytia elsaeoswaldae Stechow, 1914, a species described for the tropical western Atlantic and subsequently considered conspecific to the nearly-cosmopolitan species Clytia gracilis (Sars, 1850) and Clytia hemisphaerica, originally described for the temperate North Atlantic. Based on observations of mature medusae and multiple colonies from southeastern Brazil and the U. S. Virgin Islands (type locality), our results show that C. elsaeoswaldae is morphologically distinct from C. gracilis and C. hemisphaerica. The morphological results are corroborated by a multigene phylogenetic analysis of the genus Clytia, which shows that C. gracilis-like species form a polyphyletic group of several species. These results suggest that the nearly-cosmopolitan distribution attributed to some species of Clytia may be due to the non-recognition of morphologically similar species with more restricted ranges.
Resumo:
Supply of competent larvae to the benthic habitat is a major determinant of population dynamics in coastal and estuarine invertebrates with an indirect life cycle. Larval delivery may depend not only on physical transport mechanisms, but also on larval behavior and physiological progress to the competent stage. Yet, the combined analysis of such factors has seldom been attempted. We used time-series analyses to examine tide- and wind-driven mechanisms responsible for the supply of crab megalopae to an estuarine river under a major marine influence in SW Spain, and monitored the vertical distribution of upstream moving megalopae, their net flux and competent state. The species Panopeus africanus (estuarine), Brachynotus sexdentatus (euryhaline) and Nepinnotheres pinnotheres (coastal) comprised 80% of the whole sample, and responded in a similar way to tide and wind forcing. Tidal range was positively correlated to supply, with maxima 0 to 1 d after spring tides, suggesting selective tidal stream transport. Despite being extensively subjected to upwelling, downwind drift under the effect of westerlies, not Ekman transport, explained residual supply variation at our sampling area. Once in the estuary, net flux and competence state matched the expected trends. Net upstream flux increased from B. sexdentatus to P. africanus, favoring transport to a sheltered coastal habitat (N. pinnotheres), or to the upper estuary (P. africanus). Competence state was highest in N. pinnotheres, intermediate in B. sexdentatus and lowest in P. africanus, as expected if larvae respond to cues from adequate benthic habitat. P. africanus megalopae were found close to the bottom, not above, rendering slower upstream transport than anticipated.
Resumo:
Understanding the product`s `end-of-life` is important to reduce the environmental impact of the products` final disposal. When the initial stages of product development consider end-of-life aspects, which can be established by ecodesign (a proactive approach of environmental management that aims to reduce the total environmental impact of products), it becomes easier to close the loop of materials. The `end-of-life` ecodesign methods generally include more than one `end-of-life` strategy. Since product complexity varies substantially, some components, systems or sub-systems are easier to be recycled, reused or remanufactured than others. Remanufacture is an effective way to maintain products in a closed-loop, reducing both environmental impacts and costs of the manufacturing processes. This paper presents some ecodesign methods focused on the integration of different `end-of-life` strategies, with special attention to remanufacturing, given its increasing importance in the international scenario to reduce the life cycle impacts of products. (C) 2009 Elsevier Ltd. All rights reserved.