5 resultados para leaf tissue density
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: The role of osteocytes in bone structure and function remains partially unresolved. Their participation in mechanotransduction, i.e., the conversion of a physical stimulus into a cellular response, has been hypothesized. The present study was an evaluation of the osteocyte density in the peri-implant bone of immediately loaded and submerged dental implants. Methods: Fourteen male patients were included in the study; all of them were partially edentulous and needed a posterior mandibular restoration. Implants were inserted in these areas; half of the sample was loaded immediately (included in a fixed provisional prosthesis on the same day as implant surgery), whereas the other half was left to heal submerged. Fourteen implants (seven immediately loaded and seven unloaded) were retrieved with a trephine after a healing period of 8 weeks. The specimens were treated to obtain thin ground sections, and histomorphometry was used to evaluate the osteocyte index in the peri-implant bone. Results: A higher and statistically significant number of osteocytes was found in the peri-implant bone around immediately loaded implants (P=0.0081). A correlation between the percentage of bone-implant contact and osteocyte density was found for immediately loaded implants (P=0.0480) but not for submerged implants (P=0.2667). Conclusion: The higher number of osteocytes in the peri-implant bone around immediately loaded implants could be related to the functional adaptation required by the loading stimulus, which also explains the hypothesized involvement of the osteocytes in the maintenance of the bone matrix. J Periodontol 2009;80:499-504.
Resumo:
Background: The aim of this study was to evaluate root coverage of gingival recessions and to compare graft vascularization in smokers and non-smokers. Methods: Thirty subjects, 15 smokers and 15 non-smokers, were selected. Each subject had one Miller Class I or II recession in a non-molar tooth. Clinical measurements of probing depth (PD), relative clinical attachment level (CAL), gingival recession (GR), and width of keratinized tissue (KT) were determined at baseline and 3 and 6 months after surgery. The recessions were treated surgically with a coronally positioned flap associated with a subepithelial connective tissue graft. A small portion of this graft was prepared for immunohistochemistry. Blood vessels were identified and counted by expression of factor VIII-related antigen-stained endothelial cells. Results: Intragroup analysis showed that after 6 months there a was gain in CAL, a decrease in GR, and an increase in KT for both groups (P<0.05), whereas changes in PD were not statistically significant. Smokers had less root coverage than non-smokers (58.02% +/- 19.75% versus 83.35% +/- 18.53%; P<0.05). Furthermore, the smokers had more GR (1.48 +/- 0.79 mm versus 0.52 +/- 0.60 mm) than the nonsmokers (P<0.05). Histomorphometry of the donor tissue revealed a blood vessel density of 49.01 +/- 11.91 vessels/200x field for non-smokers and 36.53 +/- 10.23 vessels/200x field for smokers (P<0.05). Conclusion: Root coverage with subepithelial connective tissue graft was negatively affected by smoking, which limited and jeopardized treatment results.
Resumo:
In order to consider the photodynamic therapy (PDT) as a clinical treatment for candidosis, it is necessary to know its cytotoxic effect on normal cells and tissues. Therefore, this study evaluated the toxicity of PDT with PhotogemA (R) associated with red light-emitting diode (LED) on L929 and MDPC-23 cell cultures and healthy rat palatal mucosa. In the in vitro experiment, the cells (30000 cells/cm(2)) were seeded in 24-well plates for 48 h, incubated with PhotogemA (R) (50, 100, or 150 mg/l) and either irradiated or not with a red LED source (630 +/- 3 nm; 75 or 100 J/cm(2); 22 mW/cm(2)). Cell metabolism was evaluated by the MTT assay (ANOVA and Dunnet`s post hoc tests; p < 0.05) and cell morphology was examined by scanning electron microscopy. In the in vivo evaluation, PhotogemA (R) (500 mg/l) was applied to the palatal mucosa of Wistar rats during 30 min and exposed to red LED (630 nm) during 20 min (306 J/cm(2)). The palatal mucosa was photographed for macroscopic analysis at 0, 1, 3, and 7 days posttreatment and subjected to histological analysis after sacrifice of the rats. For both cell lines, there was a statistically significant decrease of the mitochondrial activity (90-97%) for all PhotogemA (R) concentrations associated with red LED regardless of the energy density. However, in the in vivo evaluation, the PDT-treated groups presented intact mucosa with normal characteristics both macroscopically and histologically. From these results, it may be concluded that the association of PhotogemA (R) and red LED caused severe toxic effects on normal cell cultures, characterized by the reduction of mitochondrial activity and morphological alterations, but did not cause damage to the rat palatal mucosa in vivo.
Resumo:
Background: The expression levels of the clotting initiator protein Tissue Factor (TF) correlate with vessel density and the histological malignancy grade of glioma patients. Increased procoagulant tonus in high grade tumors (glioblastomas) also indicates a potential role for TF in progression of this disease, and suggests that anticoagulants could be used as adjuvants for its treatment. Objectives: We hypothesized that blocking of TF activity with the tick anticoagulant Ixolaris might interfere with glioblastoma progression. Methods and results: TF was identified in U87-MG cells by flow-cytometric and functional assays (extrinsic tenase). In addition, flow-cytometric analysis demonstrated the exposure of phosphatidylserine in the surface of U87-MG cells, which supported the assembly of intrinsic tenase (FIXa/FVIIIa/FX) and prothrombinase (FVa/FXa/prothrombin) complexes, accounting for the production of FXa and thrombin, respectively. Ixolaris effectively blocked the in vitro TF-dependent procoagulant activity of the U87-MG human glioblastoma cell line and attenuated multimolecular coagulation complexes assembly. Notably, Ixolaris inhibited the in vivo tumorigenic potential of U87-MG cells in nude mice, without observable bleeding. This inhibitory effect of Ixolaris on tumor growth was associated with downregulation of VEGF and reduced tumor vascularization. Conclusion: Our results suggest that Ixolaris might be a promising agent for anti-tumor therapy in humans.
Resumo:
Pineapple leaf fiber (PALF) which is rich in cellulose, abundantly available, relatively inexpensive, low density, nonabrasive nature, high filling level possible, low energy consumption, high specific properties, biodegradability and has the potential for polymer reinforcement. The utilization of pineapple leaf fiber (PALF) as reinforcements in thermoplastic and thermosetting resins in micro and nano form for developing low cost and lightweight composites is an emerging field of research in polymer science and technology. In this paper we examines the industrial applicabiliy of PALF, mainly for production of composite materials and special papers, chemical feedstocks (bromelin enzyme) and fabrics.