4 resultados para leaf epidermal features
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Alcantarea (Bromeliaceae) has 26 species that are endemic to eastern Brazil, occurring mainly on gneiss-granitic rock outcrops (`inselbergs`). Alcantarea has great ornamental potential and several species are cultivated in gardens. Limited data is available in the literature regarding the leaf anatomical features of the genus, though it has been shown that it may provide valuable information for characterizing of Bromeliaceae taxa. In the present work, we employed leaf anatomy to better characterize the genus and understand its radiation into harsh environments, such as inselbergs. We also searched for characteristics potentially useful in phylogenetic analyses and in delimiting Alcantarea and Vriesea. The anatomical features of the leaves, observed for various Alcantarea species, are in accordance with the general pattern shown by other Bromeliaceae members. However, some features are notable for their importance for sustaining life on rock outcrops, such as: small epidermal thick-walled cells, uneven sinuous epidermal walls, hypodermis often differentiated into lignified layers with thick-walled cells, aquiferous hypodermis bearing collapsible cells, and the presence of well developed epicuticular stratum. Alcantarea leaves tend to show different shapes in the spongy parenchyma, and have chlorenchymatous palisade parenchyma arranged in more well-defined arches, when compared to Vriesea species from the same habitat.
Resumo:
Cariria orbiculiconiformis gen. nov. et spec. nov., a gymnosperm with gnetoid characters is described from the upper Aptian Crato Formation of the Araripe Basin in northeastern Brazil. Gross-morphology and anatomical details have been studied and characters have been discussed in respect to various seed plants. Several of these characters fit best with those of Gnetales and their putative fossil allies. However, the fossil plant cannot be assigned to any known extinct or extant group of seed plants in their current circumscription. Stem gross-morphology, xylotomical characters and epidermal features indicate a gnetophytic relationship, whereas characters of the reproductive organs are rather distinct from those found in extant taxa. The reproductive unit of the new taxon represents a triple organ consisting of two dichasial ovulate structures and one median pollen-producing structure containing smooth, monosulcate, boat-shaped pollen in-situ. Each ovulate structure consists of two distinct pairs of bracts, a sterile one at the base and a fertile one forming a terminal orbicular capsule. Stiff processes found in the apex of the ovulate structure may represent micropylar tubes of seeds, as seen in the Bennettitales-Erdtmanithecales-Gnetales group. C orbiculiconiformis gen. nov. et spec. nov. was ans herbaceous or semi-shrub-like plant that may have been adapted to the r-strategy in a stressful environment. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Vegetative and fertile shoots of a shrub-like seed plant from the late Aptian Crato Formation of Brazil are described as Cearania heterophylla Kunzmann, Mohr and Bernardes-de-Oliveira, gen. nov. et sp. nov. Anatomical details of the axes, epidermal features and separate ovulate and pollen producing organs indicate the gymnospermous nature of this plant. The vascular tissue of the axes includes tracheids with bordered pits and fiber tracheids. Vegetative shoots comprising at least three branching orders bear opposite-decussately arranged ovate to lanceolate, dorsiventrally flattened, parallelodromous, rather thick leaves that vary tremendously in size. The amphistomatic leaves bear (brachy-)paracytic stomatal complexes arranged in simple longitudinal files. The ovulate structure is interpreted as a terminally attached single globular ovule/seed surrounded by at least five to six lanceolate bracts. A terminally attached pollen-cone like structure grows on a lateral leafy shoot. The unusual character combination may indicate that the fossils belong to a hitherto unknown group with affinities to ephedroid Gnetales. Sterile shoots formerly often described as Podozamites, Nageiopsis or Lilites that are at least partly congeneric with C. heterophylla Kunzmann, Mohr and Bernardes-de-Oliveira, gen. nov. et sp. nov. had a wide geographic distribution during the Early Cretaceous. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Leaves comprise most of the vegetative body of tank bromeliads and are usually subjected to strong longitudinal gradients. For instance, while the leaf base is in contact with the water accumulated in the tank, the more light-exposed middle and upper leaf sections have no direct access to this water reservoir. Therefore, the present study attempted to investigate whether different leaf portions of Guzmania monostachia, a tank-forming C(3)-CAM bromeliad, play distinct physiological roles in response to water shortage, which is a major abiotic constraint in the epiphytic habitat. Internal and external morphological features, relative water content, pigment composition and the degree of CAM expression were evaluated in basal, middle and apical leaf portions in order to allow the establishment of correlations between the structure and the functional importance of each leaf region. Results indicated that besides marked structural differences, a high level of functional specialization is also present along the leaves of this bromeliad. When the tank water was depleted, the abundant hydrenchyma of basal leaf portions was the main reservoir for maintaining a stable water status in the photosynthetic tissues of the apical region. In contrast, the CAM pathway was intensified specifically in the upper leaf section, which is in agreement with the presence of features more suitable for the occurrence of photosynthesis at this portion. Gas exchange data indicated that internal recycling of respiratory CO(2) accounted for virtually all nighttime acid accumulation, characterizing a typical CAM-idling pathway in the drought-exposed plants. Altogether, these data reveal a remarkable physiological complexity along the leaves of G. monostachia, which might be a key adaptation to the intermittent water supply of the epiphytic niche. (C) 2009 Elsevier GmbH. All rights reserved.