5 resultados para ladder
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The effects of different types of goal setting on motor skill learning were investigated. 100 individuals (64 men, 36 women) without experience in the performance of the Bachman ladder task participated. Participants were randomly assigned to one of five goal groups: (a) generic, (b) long-term, difficult, (c) long-term, easy; (d) short- and long-term, difficult, and (e) short- and long-term, easy. In the acquisition phase, participants performed 200 trials, and in the transfer and retention phases, each performed 50 trials. The dependent variable was the number of steps achieved in blocks of 10 trials. The results showed that the groups had similar performances in both the transfer and retention phases. Setting of generic, difficult, easy, long- and short-term, and self-setting goals all enabled similar effects on motor learning.
Resumo:
We theoretically investigate negative differential resistance (NDR) for ballistic transport in semiconducting armchair graphene nanoribbon (aGNR) superlattices (5 to 20 barriers) at low bias voltages V(SD) < 500 mV. We combine the graphene Dirac Hamiltonian with the Landauer-Buttiker formalism to calculate the current I(SD) through the system. We find three distinct transport regimes in which NDR occurs: (i) a ""classical"" regime for wide layers, through which the transport across band gaps is strongly suppressed, leading to alternating regions of nearly unity and zero transmission probabilities as a function of V(SD) due to crossing of band gaps from different layers; (ii) a quantum regime dominated by superlattice miniband conduction, with current suppression arising from the misalignment of miniband states with increasing V(SD); and (iii) a Wannier-Stark ladder regime with current peaks occurring at the crossings of Wannier-Stark rungs from distinct ladders. We observe NDR at voltage biases as low as 10 mV with a high current density, making the aGNR superlattices attractive for device applications.
Resumo:
Petri net (PN) modeling is one of the most used formal methods in the automation applications field, together with programmable logic controllers (PLCs). Therefore, the creation of a modeling methodology for PNs compatible with the IEC61131 standard is a necessity of automation specialists. Different works dealing with this subject have been carried out; they are presented in the first part of this paper [Frey (2000a, 2000b); Peng and Zhou (IEEE Trans Syst Man Cybern, Part C Appl Rev 34(4):523-531, 2004); Uzam and Jones (Int J Adv Manuf Technol 14(10):716-728, 1998)], but they do not present a completely compatible methodology with this standard. At the same time, they do not maintain the simplicity required for such applications, nor the use of all-graphical and all-mathematical ordinary Petri net (OPN) tools to facilitate model verification and validation. The proposal presented here completes these requirements. Educational applications at the USP and UEA (Brazil) and the UO (Cuba), as well as industrial applications in Brazil and Cuba, have already been carried out with good results.
Resumo:
The analysis of the IR carbonyl band of the N,N-diethyl-2-[(4`-substituted)phenylsulfonyl]acetamides Et(2)NC(O)CH(2)S(O)(2)-C(6)H(4)-Y (Y = OMe 1, Me 2,1-13, Cl 4, Br 5, NO(2) 6) supported by B3LYP/6-31G(d,p) calculations for 3, indicated the existence of three pairs (anti and syn) of cis (c) and gauche (g(1) and g(2)) conformers in the gas phase, being the gauche conformers significantly more stable than the cis ones. The anti geometry is more stable than the syn one, for each pair of cis and gauche conformers. The summing up of the orbital (NBO analysis) and electrostatic interactions justifies quite well the populations and the v(CO) frequencies of the anti and syn pairs of c, g(1) and g(2) conformers. The IR higher carbonyl frequency component whose population is ca. 10%, in CCl(4), may be ascribed to the least stable and most polar cis conformer pair (in the gas phase) and the lower frequency component whose population is ca. 90%, to the summing up of the populations of the two most stable and least polar gauche conformer pairs (g(1) and g(2)) (in the gas phase). The reversal of the cis(c)/gauche (g(1) + g(2)) population ratio observed in chloroform ca. 60% (cis)/40% (gauche) and the occurrence of the most polar cis(c) conformer only, in acetonitrile, strongly suggests the coalescence of the two gauche components in a unique carbonyl band in solution. A further support to this rationalization is given by the single point PCM solvation model performed by HF/6-31G(d,p) method, which showed a progressive increase of the c/(g(1) + g(2)) ratio going from gas to CCl(4), to CHCl(3) and to CH(3)CN. X-ray single crystal analysis of 4 indicates that this compound assumes, in the solid state, the syn-clinal (gauche) conformation with respect to the [O=C-CH(2)-S] moiety, and the most stable anti geometry relative to the [C(O)N(CH(2)CH(3))(2)] fragment. In order to obtain larger energy gain from the crystal packing the molecules of 4 are linked in centrosymmetric dimers through two C-H center dot center dot center dot O interactions (C-H([O-Ph])center dot center dot center dot O([SO2])) forming a step ladder. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Poly(ortho-phenylenediamine) and oligomers of ortho-phenylenediamine were chemically synthesized and characterized by UV-vis, (1)H and (13)C NMR, FTIR and resonance Raman spectroscopies. Polymerization of ortho-phenylenediamine in HCl medium with ammonium persulfate only leads the trimer compound, in disagreement with some previous reports. Nevertheless, in acetic acid medium it was possible to prepare a polymer constituted by ladder phenazinic segments with different protonation levels and quinonediimine rings (polyaniline-like). X-ray absorption at N K-edge (N K XANES), X-ray photoelectron (XPS) and Electron paramagnetic resonance (EPR) spectroscopies were used to determine the different kinds of nitrogen presents in this class of polymer. N K XANES spectrum of poly(ortho-phenylenediamine) shows the band of -N=nitrogen of non-protonated phenazinic rings at 398.2 eV. In addition, XPS and N K XANES data confirm the presence of different types of protonated nitrogens in the polymeric poly(ortho-phenylenediamine) chain and the EPR spectrum shows that the polymer has a very weak polaronic signal. (C) 2009 Elsevier Ltd. All rights reserved.