13 resultados para k-Error linear complexity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a catalogue of galaxy photometric redshifts and k-corrections for the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7), available on the World Wide Web. The photometric redshifts were estimated with an artificial neural network using five ugriz bands, concentration indices and Petrosian radii in the g and r bands. We have explored our redshift estimates with different training sets, thus concluding that the best choice for improving redshift accuracy comprises the main galaxy sample (MGS), the luminous red galaxies and the galaxies of active galactic nuclei covering the redshift range 0 < z < 0.3. For the MGS, the photometric redshift estimates agree with the spectroscopic values within rms = 0.0227. The distribution of photometric redshifts derived in the range 0 < z(phot) < 0.6 agrees well with the model predictions. k-corrections were derived by calibration of the k-correct_v4.2 code results for the MGS with the reference-frame (z = 0.1) (g - r) colours. We adopt a linear dependence of k-corrections on redshift and (g - r) colours that provide suitable distributions of luminosity and colours for galaxies up to redshift z(phot) = 0.6 comparable to the results in the literature. Thus, our k-correction estimate procedure is a powerful, low computational time algorithm capable of reproducing suitable results that can be used for testing galaxy properties at intermediate redshifts using the large SDSS data base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-linear methods for estimating variability in time-series are currently of widespread use. Among such methods are approximate entropy (ApEn) and sample approximate entropy (SampEn). The applicability of ApEn and SampEn in analyzing data is evident and their use is increasing. However, consistency is a point of concern in these tools, i.e., the classification of the temporal organization of a data set might indicate a relative less ordered series in relation to another when the opposite is true. As highlighted by their proponents themselves, ApEn and SampEn might present incorrect results due to this lack of consistency. In this study, we present a method which gains consistency by using ApEn repeatedly in a wide range of combinations of window lengths and matching error tolerance. The tool is called volumetric approximate entropy, vApEn. We analyze nine artificially generated prototypical time-series with different degrees of temporal order (combinations of sine waves, logistic maps with different control parameter values, random noises). While ApEn/SampEn clearly fail to consistently identify the temporal order of the sequences, vApEn correctly do. In order to validate the tool we performed shuffled and surrogate data analysis. Statistical analysis confirmed the consistency of the method. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the top ten most influential data mining algorithms, k-means, is known for being simple and scalable. However, it is sensitive to initialization of prototypes and requires that the number of clusters be specified in advance. This paper shows that evolutionary techniques conceived to guide the application of k-means can be more computationally efficient than systematic (i.e., repetitive) approaches that try to get around the above-mentioned drawbacks by repeatedly running the algorithm from different configurations for the number of clusters and initial positions of prototypes. To do so, a modified version of a (k-means based) fast evolutionary algorithm for clustering is employed. Theoretical complexity analyses for the systematic and evolutionary algorithms under interest are provided. Computational experiments and statistical analyses of the results are presented for artificial and text mining data sets. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nesse artigo, tem-se o interesse em avaliar diferentes estratégias de estimação de parâmetros para um modelo de regressão linear múltipla. Para a estimação dos parâmetros do modelo foram utilizados dados de um ensaio clínico em que o interesse foi verificar se o ensaio mecânico da propriedade de força máxima (EM-FM) está associada com a massa femoral, com o diâmetro femoral e com o grupo experimental de ratas ovariectomizadas da raça Rattus norvegicus albinus, variedade Wistar. Para a estimação dos parâmetros do modelo serão comparadas três metodologias: a metodologia clássica, baseada no método dos mínimos quadrados; a metodologia Bayesiana, baseada no teorema de Bayes; e o método Bootstrap, baseado em processos de reamostragem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider codimension one Anosov actions of R(k), k >= 1, on closed connected orientable manifolds of dimension n vertical bar k with n >= 3. We show that the fundamental group of the ambient manifold is solvable if and only if the weak foliation of codimension one is transversely affine. We also study the situation where one 1-parameter subgroup of R(k) admits a cross-section, and compare this to the case where the whole action is transverse to a fibration over a manifold of dimension n. As a byproduct, generalizing a Theorem by Ghys in the case k = 1, we show that, under some assumptions about the smoothness of the sub-bundle E(ss) circle plus E(uu), and in the case where the action preserves the volume, it is topologically equivalent to a suspension of a linear Anosov action of Z(k) on T(n).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to develop a Bayesian analysis for nonlinear regression models under scale mixtures of skew-normal distributions. This novel class of models provides a useful generalization of the symmetrical nonlinear regression models since the error distributions cover both skewness and heavy-tailed distributions such as the skew-t, skew-slash and the skew-contaminated normal distributions. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of Markov chain Monte Carlo (MCMC) methods to simulate samples from the joint posterior distribution. In order to examine the robust aspects of this flexible class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on the model selection criteria are given. The newly developed procedures are illustrated considering two simulations study, and a real data previously analyzed under normal and skew-normal nonlinear regression models. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear mixed models were developed to handle clustered data and have been a topic of increasing interest in statistics for the past 50 years. Generally. the normality (or symmetry) of the random effects is a common assumption in linear mixed models but it may, sometimes, be unrealistic, obscuring important features of among-subjects variation. In this article, we utilize skew-normal/independent distributions as a tool for robust modeling of linear mixed models under a Bayesian paradigm. The skew-normal/independent distributions is an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal distribution, skew-t, skew-slash and the skew-contaminated normal distributions as special cases, providing an appealing robust alternative to the routine use of symmetric distributions in this type of models. The methods developed are illustrated using a real data set from Framingham cholesterol study. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 590-580 Ma Itu Granite Province (IGP) is a roughly linear belt of post-orogenic granite plutons similar to 60 km wide extending for some 350 km along the southern edge of the Apia-Guaxupe Terrane in southeastern Brazil. Typical components are subalkaline A-type granites (some with rapakivi texture) that crystallized at varied, but mostly strongly oxidizing conditions, and contrast with a coeval association of also oxidized high-K calc-alkaline granites in terms of major (e. g., lower Ca/Fe) and trace elements (higher Nb, Y, Zr). Mantle-derived magmas (such as those forming the LILE-rich Piracaia Monzodiorite, with epsilon(Nd(t)) = -7 to -10, (87)Sr/(86)Sr((t)) = 0.7045-0.7055) are inferred to derive from enriched subcontinental lithosphere modified during previous subduction, and may have played a role in the generation of the A-type granites, adding melts or fluids or both to the lower crust from which the latter were generated. The IGP is interpreted as a reflection of crust uplift and increased heat flux during ascent of hot, less dense asthenosphere after continental collision, probably reflecting breakoff of an oceanic slab coeval to the right-lateral accretion of a terrane related to the Mantiqueira Orogenic System.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report 6 K-Ar ages and paleomagnetic data from 28 sites collected in Jurassic, Lower Cretaceous and Paleocene rocks of the Santa Marta massif, to test previous hypothesis of rotations and translations of this massif, whose rock assemblage differs from other basement-cored ranges adjacent to the Guyana margin. Three magnetic components were identified in this study. A first component has a direction parallel to the present magnetic field and was uncovered in all units (D 352, I = 25.6, k = 57.35, a95 = 5.3, N = 12). A second component was isolated in Cretaceous limestone and Jurassic volcaniclastic rocks (D = 8.8, I = 8.3, k = 24.71, a95 = 13.7, N = 6), and it was interpreted as of Early Cretaceous age. In Jurassic sites with this component, Early Cretaceous K-Ar ages obtained from this and previous studies are interpreted as reset ages. The third component was uncovered in eight sites of Jurassic volcaniclastic rocks, and its direction indicates negative shallow to moderate inclinations and northeastward declinations. K-Ar ages in these sites are of Early (196.5 +/- 4.9 Ma) to early Late Jurassic age (156.6 +/- 8.9 Ma). Due to local structural complexity and too few Cretaceous outcrops to perform a reliable unconformity test, we only used two sites with (1) K-Ar ages, (2) less structural complexity, and (3) reliable structural data for Jurassic and Cretaceous rocks. The mean direction of the Jurassic component is (D = 20.4, I = -18.2, k = 46.9, a95 = 5.1, n = 18 specimens from two sites). These paleomagnetic data support previous models of northward along-margin translations of Grenvillian-cored massifs. Additionally, clockwise vertical-axis rotation of this massif, with respect to the stable craton, is also documented; the sense of rotation is similar to that proposed for the Perija Range and other ranges of the southern Caribbean margin. More data is needed to confirm the magnitudes of rotations and translations. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider conditions which allow the embedding of linear hypergraphs of fixed size. In particular, we prove that any k-uniform hypergraph H of positive uniform density contains all linear k-uniform hypergraphs of a given size. More precisely, we show that for all integers l >= k >= 2 and every d > 0 there exists Q > 0 for which the following holds: if His a sufficiently large k-uniform hypergraph with the property that the density of H induced on every vertex subset of size on is at least d, then H contains every linear k-uniform hypergraph F with l vertices. The main ingredient in the proof of this result is a counting lemma for linear hypergraphs, which establishes that the straightforward extension of graph epsilon-regularity to hypergraphs suffices for counting linear hypergraphs. We also consider some related problems. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scale mixtures of the skew-normal (SMSN) distribution is a class of asymmetric thick-tailed distributions that includes the skew-normal (SN) distribution as a special case. The main advantage of these classes of distributions is that they are easy to simulate and have a nice hierarchical representation facilitating easy implementation of the expectation-maximization algorithm for the maximum-likelihood estimation. In this paper, we assume an SMSN distribution for the unobserved value of the covariates and a symmetric scale mixtures of the normal distribution for the error term of the model. This provides a robust alternative to parameter estimation in multivariate measurement error models. Specific distributions examined include univariate and multivariate versions of the SN, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Influence diagnostics methods are extended in this article to the Grubbs model when the unknown quantity x (latent variable) follows a skew-normal distribution. Diagnostic measures are derived from the case-deletion approach and the local influence approach under several perturbation schemes. The observed information matrix to the postulated model and Delta matrices to the corresponding perturbed models are derived. Results obtained for one real data set are reported, illustrating the usefulness of the proposed methodology.